EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
基本信息
- 批准号:1738063
- 负责人:
- 金额:$ 5.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops improved computer vision methods for automatic recognition of arbitrary objects in images from realistic environments. Object recognition is typically performed by fitting a function that maps an image to likely object locations and labels. Such a function is fitted (trained) on a database of example images along with their human-assigned object locations and labels. This research can result in more accurate visual perception for socially relevant applications, such as robots performing household tasks, assisting the elderly, responding to disasters and quickly learning new manufacturing and service skills. It can also provide a common codebase for the wider community, new dataset challenges for domain adaptation problems, the dissemination of scientific and technical results and associated courseware, and specific outreach to ensure broad participation of underrepresented groups.The specific research agenda is structured around two aims. The first aim is to establish bounds on the coverage of latent physical factors in datasets needed for human-level performance on arbitrary domains. The study involves both existing datasets and new datasets generated using graphics rendering techniques at various degrees of photorealism. The goal is to develop a theory of the physical complexity of a given dataset and how it affects generalization to real world object recognition tasks, with respect to a given image representation and learning framework. Physical parameters include but are not limited to: 3D shape, surface color, texture, background/scene, camera viewpoint, sensor noise, lighting, specularities and cast shadows. The second research aim is to learn image representations invariant to some of the physical causes of data bias. The goal is to develop model and representation learning methods that are able to learn from a combination of real and non-photorealistic synthetic data, and are resistant to common sources of data bias. The representations include simple edge-based descriptors, and more generally hierarchical representations based on layers of convolution and pooling operations.
这个项目开发了改进的计算机视觉方法,用于自动识别现实环境中图像中的任意对象。对象识别通常通过拟合将图像映射到可能的对象位置和标签的函数来执行。这样的函数被安装(训练)在示例图像及其人类分配的对象位置和标签的数据库上。这项研究可以为与社会相关的应用程序带来更准确的视觉感知,例如执行家务、帮助老年人、应对灾难和快速学习新的制造和服务技能的机器人。它还可以为更广泛的社区提供一个共同的代码库,为领域适应问题提供新的数据集挑战,传播科学技术成果和相关的课件,并进行具体的外联,以确保代表不足的群体的广泛参与。第一个目标是确定数据集中潜在物理因素的覆盖范围,以满足人类在任意领域的表现所需。这项研究包括现有的数据集和使用不同程度的照片真实感的图形渲染技术生成的新数据集。目标是发展一种关于给定数据集的物理复杂性的理论,以及相对于给定的图像表示和学习框架,它如何影响对现实世界对象识别任务的泛化。物理参数包括但不限于:3D形状、表面颜色、纹理、背景/场景、相机视点、传感器噪声、照明、镜面反射和投射阴影。第二个研究目标是学习不随数据偏差的某些物理原因而变化的图像表征。其目标是开发能够从真实和非照片真实合成数据的组合中学习的模型和表示学习方法,并且能够抵抗常见的数据偏向来源。这些表示包括简单的基于边的描述符,以及更一般的基于卷积和池化运算层的分层表示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kate Saenko其他文献
Temporal Relevance Analysis for Video Action Models
视频动作模型的时间相关性分析
- DOI:
10.48550/arxiv.2204.11929 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Quanfu Fan;Donghyun Kim;Chun;S. Sclaroff;Kate Saenko;Sarah Adel Bargal - 通讯作者:
Sarah Adel Bargal
Vision and Language Integration Meets Multimedia Fusion
视觉和语言集成遇见多媒体融合
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Moens;Katerina Pastra;Kate Saenko;T. Tuytelaars - 通讯作者:
T. Tuytelaars
Modeling the Uncertainty in Inverse Radiometric Calibration
逆辐射校准中的不确定性建模
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ying Xiong;Kate Saenko;Todd E. Zickler;Trevor Darrell - 通讯作者:
Trevor Darrell
Unsupervised Video-to-Video Translation
无监督视频到视频翻译
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
D. Bashkirova;Ben Usman;Kate Saenko - 通讯作者:
Kate Saenko
Open-vocabulary Phrase Detection
开放词汇短语检测
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bryan A. Plummer;Kevin J. Shih;Yichen Li;Ke Xu;Svetlana Lazebnik;S. Sclaroff;Kate Saenko - 通讯作者:
Kate Saenko
Kate Saenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kate Saenko', 18)}}的其他基金
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2120322 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
- 批准号:
1928477 - 财政年份:2019
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer
S
- 批准号:
1724237 - 财政年份:2017
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
CI-NEW: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-NEW:协作研究:COVE-数据、注释和工具的计算机视觉交换
- 批准号:
1629700 - 财政年份:2016
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1723379 - 财政年份:2016
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1535797 - 财政年份:2015
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
- 批准号:
1451244 - 财政年份:2014
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
相似海外基金
Quantifying and reducing upper extremity impairments in cerebral palsy: Biomechanics, hippotherapy, and participation.
量化和减少脑瘫上肢损伤:生物力学、马术疗法和参与。
- 批准号:
10371872 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
Quantifying and reducing the burden of new and emerging psychoactive substances in Australia
量化和减轻澳大利亚新出现的精神活性物质的负担
- 批准号:
nhmrc : 1197241 - 财政年份:2020
- 资助金额:
$ 5.51万 - 项目类别:
Investigator Grants
QUoRUM: QUantifying and Reducing Uncertainty in Multi-Decadal Projection of Ice Sheet-Sea Level Contribution
QUoRUM:量化和减少冰盖-海平面贡献的数十年预测的不确定性
- 批准号:
NE/T001607/1 - 财政年份:2020
- 资助金额:
$ 5.51万 - 项目类别:
Research Grant
Quantifying and Reducing Uncertainty in the Processes Controlling Tropospheric Ozone and OH
量化和减少对流层臭氧和 OH 控制过程中的不确定性
- 批准号:
NE/N003411/1 - 财政年份:2016
- 资助金额:
$ 5.51万 - 项目类别:
Research Grant
Quantifying and Reducing Motor Compensation After Stroke in Ambient Settings
在环境设置中量化和减少冲程后的电机补偿
- 批准号:
9099369 - 财政年份:2016
- 资助金额:
$ 5.51万 - 项目类别:
Quantifying and reducing catch-and-release mortality of trout to support a wilderness tourism experience at Kenauk Resort
量化并降低鳟鱼捕获后释放的死亡率,以支持基纳克度假村的荒野旅游体验
- 批准号:
479161-2015 - 财政年份:2015
- 资助金额:
$ 5.51万 - 项目类别:
Engage Grants Program
Reducing hospital and long term care facility C. difficile infection rates by understanding the sources of infection, measuring environmental burden, and quantifying inter-institutional patient movement
通过了解感染源、测量环境负担和量化机构间患者流动,降低医院和长期护理机构艰难梭菌感染率
- 批准号:
317560 - 财政年份:2014
- 资助金额:
$ 5.51万 - 项目类别:
Operating Grants
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
- 批准号:
1451244 - 财政年份:2014
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
Increasing the sustainability of multi-sector Pacific salmon fisheries in coastal rivers of British Columbia by quantifying and reducing mortality of released fish
通过量化和降低放生鱼类的死亡率,提高不列颠哥伦比亚省沿海河流多部门太平洋鲑鱼渔业的可持续性
- 批准号:
401408-2010 - 财政年份:2010
- 资助金额:
$ 5.51万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Increasing the sustainability of multi-sector Pacific salmon fisheries in coastal rivers of British Columbia by quantifying and reducing mortality of released fish
通过量化和降低放生鱼类的死亡率,提高不列颠哥伦比亚省沿海河流多部门太平洋鲑鱼渔业的可持续性
- 批准号:
372700-2008 - 财政年份:2010
- 资助金额:
$ 5.51万 - 项目类别:
Strategic Projects - Group














{{item.name}}会员




