EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
基本信息
- 批准号:1738063
- 负责人:
- 金额:$ 5.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops improved computer vision methods for automatic recognition of arbitrary objects in images from realistic environments. Object recognition is typically performed by fitting a function that maps an image to likely object locations and labels. Such a function is fitted (trained) on a database of example images along with their human-assigned object locations and labels. This research can result in more accurate visual perception for socially relevant applications, such as robots performing household tasks, assisting the elderly, responding to disasters and quickly learning new manufacturing and service skills. It can also provide a common codebase for the wider community, new dataset challenges for domain adaptation problems, the dissemination of scientific and technical results and associated courseware, and specific outreach to ensure broad participation of underrepresented groups.The specific research agenda is structured around two aims. The first aim is to establish bounds on the coverage of latent physical factors in datasets needed for human-level performance on arbitrary domains. The study involves both existing datasets and new datasets generated using graphics rendering techniques at various degrees of photorealism. The goal is to develop a theory of the physical complexity of a given dataset and how it affects generalization to real world object recognition tasks, with respect to a given image representation and learning framework. Physical parameters include but are not limited to: 3D shape, surface color, texture, background/scene, camera viewpoint, sensor noise, lighting, specularities and cast shadows. The second research aim is to learn image representations invariant to some of the physical causes of data bias. The goal is to develop model and representation learning methods that are able to learn from a combination of real and non-photorealistic synthetic data, and are resistant to common sources of data bias. The representations include simple edge-based descriptors, and more generally hierarchical representations based on layers of convolution and pooling operations.
该项目开发了改进的计算机视觉方法,以自动识别来自现实环境的图像中的任意对象。通常通过拟合将图像映射到可能的对象位置和标签的函数来执行对象识别。该功能在示例图像的数据库中拟合(训练)以及其人为分配的对象位置和标签。这项研究可能会导致对社会相关应用的更准确的视觉感知,例如机器人执行家庭任务,协助老年人,对灾难做出反应并迅速学习新的制造和服务技能。它还可以为更广泛的社区提供通用的代码库,针对领域适应问题的新数据集挑战,科学和技术结果和相关的课程软件的传播以及确保代表性不足的集团的广泛参与的特定参与。具体的研究议程是围绕两个目标构建的。第一个目的是建立覆盖在任意域中人类水平绩效所需的潜在物理因素的覆盖范围。该研究涉及使用图形渲染技术生成的现有数据集和新的数据集。目的是发展给定数据集的物理复杂性及其如何影响给定图像表示和学习框架对现实世界对象识别任务的概括。物理参数包括但不限于:3D形状,表面颜色,纹理,背景/场景,摄像头视点,传感器噪声,照明,镜面和铸造阴影。第二个研究目的是学习数据偏差的某些物理原因不变的图像表示。目的是开发能够从真实和非遗迹合成数据的组合中学习的模型和表示学习方法,并且对数据偏差的共同来源有抵抗力。这些表示包括简单的基于边缘的描述符,以及基于卷积和合并操作层的更一般的层次表示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kate Saenko其他文献
Temporal Relevance Analysis for Video Action Models
视频动作模型的时间相关性分析
- DOI:
10.48550/arxiv.2204.11929 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Quanfu Fan;Donghyun Kim;Chun;S. Sclaroff;Kate Saenko;Sarah Adel Bargal - 通讯作者:
Sarah Adel Bargal
Unsupervised Video-to-Video Translation
无监督视频到视频翻译
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
D. Bashkirova;Ben Usman;Kate Saenko - 通讯作者:
Kate Saenko
Vision and Language Integration Meets Multimedia Fusion
视觉和语言集成遇见多媒体融合
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Moens;Katerina Pastra;Kate Saenko;T. Tuytelaars - 通讯作者:
T. Tuytelaars
Modeling the Uncertainty in Inverse Radiometric Calibration
逆辐射校准中的不确定性建模
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ying Xiong;Kate Saenko;Todd E. Zickler;Trevor Darrell - 通讯作者:
Trevor Darrell
Deconstructing the Deformable Parts Model : Do More with Less
解构可变形零件模型:事半功倍
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Brigit Schroeder;Baochen Sun;Kate Saenko;Karim Ali - 通讯作者:
Karim Ali
Kate Saenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kate Saenko', 18)}}的其他基金
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2120322 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
- 批准号:
1928477 - 财政年份:2019
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer
S
- 批准号:
1724237 - 财政年份:2017
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
CI-NEW: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-NEW:协作研究:COVE-数据、注释和工具的计算机视觉交换
- 批准号:
1629700 - 财政年份:2016
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1723379 - 财政年份:2016
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1535797 - 财政年份:2015
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
- 批准号:
1451244 - 财政年份:2014
- 资助金额:
$ 5.51万 - 项目类别:
Standard Grant
相似国自然基金
轻量化多功能因瓦合金多孔材料增材制造与性能表征评价
- 批准号:12372133
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
- 批准号:72363013
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
明星企业崛起与最优贸易政策制定:理论与量化研究
- 批准号:72303116
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复合场景下基于多模态融合的轻量化任务处理与模型泛化研究
- 批准号:62372111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of magnetic coated rectangular wire for reducing AC copper loss and reducing size and weight of transformers and inductors
开发磁性涂层矩形线,以减少交流铜损并减小变压器和电感器的尺寸和重量
- 批准号:
23H01397 - 财政年份:2023
- 资助金额:
$ 5.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantifying and reducing upper extremity impairments in cerebral palsy: Biomechanics, hippotherapy, and participation.
量化和减少脑瘫上肢损伤:生物力学、马术疗法和参与。
- 批准号:
10371872 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
Quantifying Real-world Effectiveness of Mental Health Interventions for Suicide Prevention in At-risk Adolescent and Transitional Age Youth
量化高危青少年和过渡时期青年心理健康干预措施预防自杀的现实有效性
- 批准号:
10610840 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
Quantifying Real-world Effectiveness of Mental Health Interventions for Suicide Prevention in At-risk Adolescent and Transitional Age Youth
量化高危青少年和过渡时期青年心理健康干预措施预防自杀的现实有效性
- 批准号:
10205663 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
Quantifying Real-world Effectiveness of Mental Health Interventions for Suicide Prevention in At-risk Adolescent and Transitional Age Youth
量化高危青少年和过渡时期青年心理健康干预措施预防自杀的现实有效性
- 批准号:
10394352 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别: