S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer

S

基本信息

  • 批准号:
    1724237
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This project develops new methods of using deep reinforcement learning to solve real world robotics problems. The project focuses on robotic manipulation tasks such as grasping, opening doors, helping out in the home, performing repairs aboard Navy ships, etc. The key operation in all of the above is the ability for the robot to reliably manipulate objects, parts, or tools with its hands in order to perform a task. The project leverages deep reinforcement learning: a new approach to robotic learning that is capable of learning both perceptual features and control policies simultaneously. This project could have important benefits for a variety of practical applications including: explosive ordnance disposal for our military, materials handling aboard Navy ships, dexterous robotic assistants for NASA astronauts in space, assistive technologies that could help seniors age in place longer, better capabilities for handling radioactive materials during nuclear cleanup, assistance for ergonomically challenging tasks in manufacturing, and general assistance in the office and the home.This research investigates novel deep reinforcement learning approaches for robotic grasping and manipulation that work well in previously unseen, unstructured environments and compose end-to-end tasks from simpler sub-task controllers. The research is built on two main results from research team's recent work, the deep learning approach to grasping and domain adaptation methods for deep neural networks. The research is guided by the following three key ideas: 1) learning in simulation and then using domain transfer techniques to adapt the solutions to reality; 2) simplifying learning for visuomotor control by using planning to estimate the value function; and 3) using symbolic task and motion planning to perform end-to-end tasks by sequencing learned controllers and planned arm/hand motions. The research team performs extensive evaluations to ensure that the system is able to perform novel instances of a task, e.g., those in a context that the robot has not seen before.
该项目开发了使用深度强化学习解决真实的世界机器人问题的新方法。该项目的重点是机器人操作任务,如抓取,开门,在家里帮忙,在海军舰艇上进行维修等,上述所有操作的关键是机器人能够可靠地操纵物体,零件或工具,以执行任务。该项目利用深度强化学习:一种新的机器人学习方法,能够同时学习感知特征和控制策略。该项目可能对各种实际应用产生重要的好处,包括:为我们的军队处理爆炸物,在海军舰艇上处理材料,为NASA宇航员在太空中提供灵巧的机器人助手,可以帮助老年人更长时间在原地老化的辅助技术,在核清理过程中处理放射性材料的更好能力,在制造业中协助人体工程学挑战性任务,这项研究调查了用于机器人抓取和操纵的新型深度强化学习方法,这些方法在以前看不见的非结构化环境中工作良好,并从更简单的子任务控制器组成端到端任务。该研究建立在研究团队最近工作的两个主要成果之上,即用于抓取的深度学习方法和用于深度神经网络的域自适应方法。该研究由以下三个关键思想指导:1)在模拟中学习,然后使用域转移技术来适应现实的解决方案; 2)通过使用规划来估计值函数,简化视觉控制的学习; 3)使用符号任务和运动规划来执行端到端的任务,通过排序学习的控制器和规划的手臂/手部运动。研究团队进行了广泛的评估,以确保系统能够执行任务的新实例,例如,那些机器人从未见过的场景。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularizing Action Policies for Smooth Control with Reinforcement Learning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Saenko其他文献

Temporal Relevance Analysis for Video Action Models
视频动作模型的时间相关性分析
  • DOI:
    10.48550/arxiv.2204.11929
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanfu Fan;Donghyun Kim;Chun;S. Sclaroff;Kate Saenko;Sarah Adel Bargal
  • 通讯作者:
    Sarah Adel Bargal
Vision and Language Integration Meets Multimedia Fusion
视觉和语言集成遇见多媒体融合
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Moens;Katerina Pastra;Kate Saenko;T. Tuytelaars
  • 通讯作者:
    T. Tuytelaars
Modeling the Uncertainty in Inverse Radiometric Calibration
逆辐射校准中的不确定性建模
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Xiong;Kate Saenko;Todd E. Zickler;Trevor Darrell
  • 通讯作者:
    Trevor Darrell
Unsupervised Video-to-Video Translation
无监督视频到视频翻译
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bashkirova;Ben Usman;Kate Saenko
  • 通讯作者:
    Kate Saenko
Open-vocabulary Phrase Detection
开放词汇短语检测
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bryan A. Plummer;Kevin J. Shih;Yichen Li;Ke Xu;Svetlana Lazebnik;S. Sclaroff;Kate Saenko
  • 通讯作者:
    Kate Saenko

Kate Saenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Saenko', 18)}}的其他基金

Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120322
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
  • 批准号:
    1928477
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CI-NEW: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-NEW:协作研究:COVE-数据、注释和工具的计算机视觉交换
  • 批准号:
    1629700
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1738063
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1723379
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1535797
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1451244
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001119
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001120
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001216
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849238
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
  • 批准号:
    1849231
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
  • 批准号:
    1924723
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849246
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
  • 批准号:
    1949346
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
  • 批准号:
    1849262
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了