AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild

AitF:FULL:协作研究:PEARL:野外感知自适应表示学习

基本信息

  • 批准号:
    1723379
  • 负责人:
  • 金额:
    $ 17.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Vast amounts of digitized images and videos are now commonly available, and the advent of search engines has further facilitated their access. This has created an exceptional opportunity for the application of machine learning techniques to model human visual perception. However, the data often does not conform to the core assumption of machine learning that training and test images are drawn from exactly the same distribution, or "domain." In practice, the training and test distributions are often somewhat dissimilar, and distributions may even drift with time. For example, a "dog" detector trained on Flickr may be tested on images from a wearable camera, where dogs are seen in different viewpoints and lighting conditions. The problem of compensating for these changes--the domain adaptation problem--must therefore be addressed both in theory and in practice for algorithms to be effective. This problem is not just a second-order effect and its solution does not constitute a small increase in performance. Ignoring it can lead to dramatically poor results for algorithms "in the field."This project will develop a core suite of theory and algorithms for PErceptual Adaptive Representation Learning (PEARL), which, when given a new task domain, and previous experience with related tasks and domains, will provide a learning architecture likely to achieve optimal generalization on the new task. We expect PEARL to have a significant impact on the research community by providing a much-needed theoretical and computational framework that takes steps toward unifying the subfields of domain adaptation theory and domain adaptation practice. Our theoretical and practical advancements will impact many application areas by allowing the use of pre-trained perceptual models (visual and otherwise) in new situations and across space and time. For example, in mobile technology and robotics, PEARL will help personal assistants and robots better adapt their perceptual interfaces to individual users and particular situated environments. At the core of this project are three main research thrusts: 1) making theoretical advances for domain adaptation by developing generalized discrepancy distance minimization; 2) using the theoretical guarantees of generalized discrepancy distance to develop algorithms for key adaptation scenarios of deep perceptual representation learning, domain adaptation with active learning, and time-dependent adaptation; 3) advancing the theory and developing algorithms for the multiple-source adaptation scenario. In addition to our core aims, we plan to implement our algorithms within a scalable open-source framework, and evaluate our algorithms on large-scale visual data sets.
大量的数字化图像和视频现在已经普遍存在,搜索引擎的出现进一步方便了这些图像和视频的获取。这为应用机器学习技术来模拟人类视觉感知创造了一个特殊的机会。然而,这些数据通常不符合机器学习的核心假设,即训练图像和测试图像是从完全相同的分布或“域”中提取的。“在实践中,训练和测试分布往往有些不同,分布甚至可能随着时间而漂移。例如,在Flickr上训练的“狗”检测器可以在来自可穿戴相机的图像上进行测试,其中狗在不同的视角和照明条件下被看到。补偿这些变化的问题-域适应问题-因此必须在理论和实践中解决算法是有效的。这个问题不仅仅是一个二阶效应,它的解决方案并不意味着性能的小幅提高。 忽略它会导致算法在该领域的结果非常糟糕。“该项目将为感知自适应表示学习(PEARL)开发一套核心理论和算法,当给定一个新的任务域以及之前相关任务和域的经验时,将提供一个学习架构,可能会在新任务上实现最佳泛化。我们希望PEARL通过提供一个急需的理论和计算框架,采取措施统一领域适应理论和领域适应实践的子领域,对研究界产生重大影响。我们的理论和实践进步将影响许多应用领域,允许在新的情况下以及跨空间和时间使用预先训练的感知模型(视觉和其他)。例如,在移动的技术和机器人技术中,PEARL将帮助个人助理和机器人更好地适应个人用户和特定环境的感知界面。 本项目的核心是三个主要的研究方向:1)通过发展广义差异距离最小化,在理论上推进领域适应:2)利用广义差异距离的理论保证,开发深度感知表征学习、主动学习领域适应和时间依赖适应等关键适应场景的算法; 3)提出多源自适应的理论和算法。除了我们的核心目标,我们计划在一个可扩展的开源框架内实现我们的算法,并在大规模的视觉数据集上评估我们的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Saenko其他文献

Temporal Relevance Analysis for Video Action Models
视频动作模型的时间相关性分析
  • DOI:
    10.48550/arxiv.2204.11929
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanfu Fan;Donghyun Kim;Chun;S. Sclaroff;Kate Saenko;Sarah Adel Bargal
  • 通讯作者:
    Sarah Adel Bargal
Modeling the Uncertainty in Inverse Radiometric Calibration
逆辐射校准中的不确定性建模
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Xiong;Kate Saenko;Todd E. Zickler;Trevor Darrell
  • 通讯作者:
    Trevor Darrell
Vision and Language Integration Meets Multimedia Fusion
视觉和语言集成遇见多媒体融合
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Moens;Katerina Pastra;Kate Saenko;T. Tuytelaars
  • 通讯作者:
    T. Tuytelaars
Unsupervised Video-to-Video Translation
无监督视频到视频翻译
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bashkirova;Ben Usman;Kate Saenko
  • 通讯作者:
    Kate Saenko
Open-vocabulary Phrase Detection
开放词汇短语检测
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bryan A. Plummer;Kevin J. Shih;Yichen Li;Ke Xu;Svetlana Lazebnik;S. Sclaroff;Kate Saenko
  • 通讯作者:
    Kate Saenko

Kate Saenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Saenko', 18)}}的其他基金

Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120322
  • 财政年份:
    2021
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
  • 批准号:
    1928477
  • 财政年份:
    2019
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer
S
  • 批准号:
    1724237
  • 财政年份:
    2017
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
CI-NEW: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-NEW:协作研究:COVE-数据、注释和工具的计算机视觉交换
  • 批准号:
    1629700
  • 财政年份:
    2016
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1738063
  • 财政年份:
    2016
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1535797
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1451244
  • 财政年份:
    2014
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
  • 批准号:
    1535795
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
  • 批准号:
    1535977
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1536003
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
  • 批准号:
    1535912
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Optimizing Networked Systems with Limited Information
AitF:完整:协作研究:利用有限信息优化网络系统
  • 批准号:
    1535972
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
  • 批准号:
    1535989
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1535797
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
  • 批准号:
    1535878
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
  • 批准号:
    1535900
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Practical Foundations for Software-Defined Network Optimization
AitF:完整:协作研究:软件定义网络优化的实践基础
  • 批准号:
    1535917
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了