CPS: Medium: Enabling Real-time Dynamic Control and Adaptation of Networked Robots in Resource-constrained and Uncertain Environments
CPS:中:在资源受限和不确定的环境中实现网络机器人的实时动态控制和适应
基本信息
- 批准号:1739315
- 负责人:
- 金额:$ 99.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Near-real-time water-quality monitoring in rivers, lakes, and water reservoirs of different physical variables is critical to prevent contaminated water from reaching the civilian population and to deploy timely solutions, or at least to issue early warnings so as to prevent damage to human and aquatic life. In order to make optimal decisions and "close the loop" promptly, it is necessary to collect, aggregate, and process water data in real time. Therefore, the goal of this project is to design a Cyber Physical System (CPS) where drones such as the Rutgers multi-medium Naviator, a Hybrid Unmanned Air/Underwater Vehicle (HUA/UV), and autonomous underwater robots (e.g., modified BlueROVs) can (i) first identify Regions of Interest (RoIs) and take measurements and well as, if needed, collect biosamples from them; (ii) and then, through collaborative information fusion and integration, perform in-situ transformation of these measurements/raw data into valuable information and, finally, into knowledge. To achieve the above goal, this project will need to solve the problem of uncertainties that arise in in-situ processing of data from sensors in any CPS. This project will provide greater autonomy and cooperation in CPSs and, at the same time, will improve scalability, reliability, and timeliness in comparison to traditional sensing systems. The challenges to achieve dynamic collaboration between local and cloud resources will be handled in Task 1, in which novel adaptive-sampling solutions that minimize the sampling cost of a RoI (in terms of time or energy expenditure) will also be developed. In Task 2, novel solutions will be designed to handle model uncertainties in the local resources due to the unpredictable behavior of computational models to input data and resources' availability. In Task 3, the project aims at developing a biosampler, i.e., "lab-on-robot", that uses in-situ measurements and communicates with the cloud resources to give results in real time on the water quality; also, new solutions to optimize the Naviator's current hybrid air/water multirotor platform/propulsion system will be designed in order for it to be able to carry and perform testing with the biosampler while also increasing its endurance. Finally, in Task 4, integrated field testing on the Raritan River, NJ, will be performed so as to validate the algorithms as well as to analyze their scalability (from an economical and feasibility perspective) and confidence/accuracy performance. Specifically, the Naviators will identify the RoIs via multimodal operations, i.e., in water and air; and then the BlueROVs (which, during the course of the project, will be made autonomous and will be modified to carry on-board water-quality sensors) will perform underwater adaptive sampling in each of those RoIs using the algorithms designed in Task 1.In terms of broader impacts, the collaboration between cloud and local resources can benefit any CPS in the following ways: (i) outsourcing computation to the cloud will allow resource-constrained vehicles (in terms of computational capability) to meet mission deadlines, and (ii) using clouds comes at a price, hence, in order to accomplish the mission goals within budget constraints, the computational tasks composing a workflow should be migrated from the local network to the cloud only when the former does not have enough computational resources to execute successfully the tasks (outbursting). In terms of outreach, this project will develop a pipeline of diverse and computer literate engineers who will be able to solve self-management CPS problems. The PIs will 1) create a course on real-time in-situ distributed computing (for graduate computer engineering and undergraduate non-engineering majors); 2) develop teaching modules for incorporation into key high-school activities; 3) leverage existing minority student outreach programs and networks at Rutgers; 4) incorporate exchange programs and team-teaching approaches; and 5) utilize distributed education technologies with application to robotics and networking. Our electrical/computer and mechanical engineering team has the theoretical and system-level skills, cross-disciplinary expertise, as well as a verifiable history of fruitful collaboration to exploit fully this project's research and educational potential.
对具有不同物理变量的河流、湖泊和水库进行近实时水质监测,对于防止受污染的水流入平民人口和及时部署解决方案,或至少发出预警以防止对人类和水生生物造成损害至关重要。为了做出最佳决策并迅速“闭环”,需要真实的实时收集、汇总和处理水数据。因此,该项目的目标是设计一个网络物理系统(CPS),其中无人机,如罗格斯多媒体导航仪,混合无人空中/水下航行器(HUA/UV)和自主水下机器人(例如,改进的BlueROV)可以(i)首先识别感兴趣区域(ROI)并进行测量,以及如果需要的话,从它们收集生物样品;(ii)然后,通过协作信息融合和集成,执行这些测量/原始数据到有价值信息的原位转换,并最终转换为知识。为达致上述目的,本项目将需要解决在任何CPS中对传感器数据进行现场处理时出现的不确定性问题。该项目将在CPS中提供更大的自主权和合作,同时,与传统的传感系统相比,将提高可扩展性,可靠性和及时性。实现本地和云资源之间动态协作的挑战将在任务1中处理,其中还将开发新颖的自适应采样解决方案,以最大限度地降低ROI的采样成本(在时间或能源支出方面)。在任务2中,将设计新的解决方案来处理本地资源中的模型不确定性,这是由于计算模型输入数据和资源可用性的不可预测行为。在任务3中,该项目旨在开发生物采样器,即,“机器人实验室”,使用现场测量并与云资源进行通信,以真实的时间给出水质结果;此外,将设计新的解决方案来优化Naviator当前的混合空气/水多旋翼平台/推进系统,以便它能够携带生物采样器并进行测试,同时也增加了其耐久性。最后,在任务4中,将在新泽西州拉里坦河进行综合现场测试,以验证算法并分析其可扩展性(从经济和可行性角度)和置信度/准确度性能。具体而言,导航员将通过多模式操作识别ROI,即,在水和空气中;然后蓝色遥控潜水器(在项目实施过程中,将实现自主,并将进行修改以携带机载水质传感器)将使用任务1中设计的算法在每个ROI中执行水下自适应采样。就更广泛的影响而言,云和本地资源之间的协作可以通过以下方式使任何CPS受益:(i)将计算外包给云将允许资源受限的车辆(在计算能力方面)满足使命期限,以及(ii)使用云是有代价的,因此,为了在预算限制内完成使命目标,只有当本地网络没有足够的计算资源来成功地执行任务时,才应该将构成工作流的计算任务从本地网络迁移到云(爆发)。在推广方面,该项目将开发一个多元化和计算机知识工程师的管道,他们将能够解决自我管理CPS问题。PI将1)创建一个实时原位分布式计算课程(研究生计算机工程和本科非工程专业); 2)开发教学模块纳入重点高中活动; 3)利用现有的少数民族学生外展计划和网络在罗格斯大学; 4)纳入交流计划和团队教学方法;以及5)利用分布式教育技术,将其应用于机器人和网络。我们的电气/计算机和机械工程团队拥有理论和系统级技能,跨学科专业知识,以及富有成效的合作的可验证历史,以充分利用该项目的研究和教育潜力。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UW-MARL: Multi-Agent Reinforcement Learning for Underwater Adaptive Sampling using Autonomous Vehicles
UW-MARL:使用自动驾驶车辆进行水下自适应采样的多智能体强化学习
- DOI:10.1145/3366486.3366533
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Rahmati, Mehdi;Nadeem, Mohammad;Sadhu, Vidyasagar;Pompili, Dario
- 通讯作者:Pompili, Dario
Real-time Image Enhancement for Vision-based Autonomous Underwater Vehicle Navigation in Murky Waters
- DOI:10.1145/3366486.3366523
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Wenjie Chen;M. Rahmati;Vidyasagar Sadhu;D. Pompili
- 通讯作者:Wenjie Chen;M. Rahmati;Vidyasagar Sadhu;D. Pompili
Compressed Underwater Acoustic Communications for Dynamic Interaction with Underwater Vehicles
用于与水下航行器动态交互的压缩水下声学通信
- DOI:10.1145/3366486.3366488
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Rahmati, Mehdi;Arjula, Archana;Pompili, Dario
- 通讯作者:Pompili, Dario
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dario Pompili其他文献
MOSFET-based Ultra-low-power Realization of Analog Joint Source-Channel Coding for IoTs
基于 MOSFET 的物联网模拟联合源通道编码超低功耗实现
- DOI:
10.1109/sahcn.2019.8824940 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vidyasagar Sadhu;Mehdi Rahmati;Dario Pompili - 通讯作者:
Dario Pompili
<em>Cloud-BSS</em>: Joint intra- and inter-Cluster interference cancellation in uplink 5G cellular networks
- DOI:
10.1016/j.comnet.2018.10.007 - 发表时间:
2018-12-24 - 期刊:
- 影响因子:
- 作者:
Abolfazl Hajisami;Dario Pompili - 通讯作者:
Dario Pompili
Orthogonal Signal Division Multiple Access for Multiuser Underwater Acoustic Networks
多用户水下声学网络的正交信号分割多址接入
- DOI:
10.1109/mass58611.2023.00055 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhuoran Qi;Zhile Li;Dario Pompili - 通讯作者:
Dario Pompili
A Bio-inspired Low-power Hybrid Analog/Digital Spiking Neural Networks for Pervasive Smart Cameras
适用于普及智能相机的仿生低功耗混合模拟/数字尖峰神经网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yung;Dario Pompili - 通讯作者:
Dario Pompili
Exploiting the untapped potential of mobile distributed computing via approximation
通过近似挖掘移动分布式计算的未开发潜力
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.3
- 作者:
Parul Pandey;Dario Pompili - 通讯作者:
Dario Pompili
Dario Pompili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dario Pompili', 18)}}的其他基金
SWIFT: SMALL: xNGRAN Navigating Spectral Utilization, LTE/WiFi Coexistence, and Cost Tradeoffs in Next Gen Radio Access Networks through Cross-Layer Design
SWIFT:小型:xNGRAN 通过跨层设计实现下一代无线接入网络中的频谱利用、LTE/WiFi 共存和成本权衡
- 批准号:
2030101 - 财政年份:2020
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
RTML: Large: Real-Time Autonomic Decision Making on Sparsity-Aware Accelerated Hardware via Online Machine Learning and Approximation
RTML:大型:通过在线机器学习和近似在稀疏感知加速硬件上进行实时自主决策
- 批准号:
1937403 - 财政年份:2019
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative: Reliable Underwater Acoustic Video Transmission Towards Human-Robot Dynamic Interaction
NeTS:媒介:协作:实现人机动态交互的可靠水下声学视频传输
- 批准号:
1763964 - 财政年份:2018
- 资助金额:
$ 99.99万 - 项目类别:
Continuing Grant
NRI: INT: COLLAB: Robust, Scalable, Distributed Semantic Mapping for Search-and-Rescue and Manufacturing Co-Robots
NRI:INT:COLLAB:用于搜索救援和制造协作机器人的稳健、可扩展、分布式语义映射
- 批准号:
1734362 - 财政年份:2017
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
NeTS: Small: Demand-Aware Dynamic Virtual Base Station Provisioning and Allocation in Cloud Radio Access Networks (C-RANs)
NeTS:小型:云无线接入网络 (C-RAN) 中的需求感知动态虚拟基站配置和分配
- 批准号:
1319945 - 财政年份:2013
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
The Seventh ACM International Conference on Underwater Networks & Systems (WUWNet'12) - Student Travel Awards
第七届ACM国际水下网络会议
- 批准号:
1255708 - 财政年份:2012
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: Towards Unified Cloud Computing and Management
协作研究:迈向统一云计算和管理
- 批准号:
1127974 - 财政年份:2011
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
CAREER: Investigating Fundamental Problems for Underwater Multimedia Communication with Application to Ocean Exploration
职业:研究水下多媒体通信的基本问题及其在海洋勘探中的应用
- 批准号:
1054234 - 财政年份:2011
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
CSR:Small:Sensor-driven Thermal-aware Autonomic Management of Instrumented Datacenters
CSR:小:传感器驱动的仪表数据中心热感知自主管理
- 批准号:
1117263 - 财政年份:2011
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: II-NEW: An Instrumented Data Center Infrastructure for Research on Cross-Layer Autonomics
协作研究:II-NEW:用于跨层自主研究的仪表化数据中心基础设施
- 批准号:
0855091 - 财政年份:2009
- 资助金额:
$ 99.99万 - 项目类别:
Continuing Grant
相似海外基金
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2414176 - 财政年份:2023
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2132285 - 财政年份:2022
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Autonomous, Persistent, and Adaptive Mobile Observational Networks Through Energy-Aware Dynamic Coverage
合作研究:CPS:中:通过能量感知动态覆盖实现自主、持久和自适应移动观测网络
- 批准号:
2223844 - 财政年份:2022
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Autonomous, Persistent, and Adaptive Mobile Observational Networks Through Energy-Aware Dynamic Coverage
合作研究:CPS:中:通过能量感知动态覆盖实现自主、持久和自适应移动观测网络
- 批准号:
2223845 - 财政年份:2022
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2132281 - 财政年份:2022
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
CPS: Medium: Batteryless Sensors Enabling Smart Green Infrastructure
CPS:中:无电池传感器支持智能绿色基础设施
- 批准号:
2038853 - 财政年份:2021
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS Medium: Enabling DER Integration via Redesign of Information Flows
合作研究:CPS 媒介:通过重新设计信息流实现 DER 集成
- 批准号:
2136199 - 财政年份:2021
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows
协作研究:CPS:中:通过重新设计信息流实现 DER 集成
- 批准号:
2136324 - 财政年份:2021
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows
协作研究:CPS:中:通过重新设计信息流实现 DER 集成
- 批准号:
2136197 - 财政年份:2021
- 资助金额:
$ 99.99万 - 项目类别:
Standard Grant