Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems

协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析

基本信息

项目摘要

Smart home products have become extremely popular with consumers due to the convenience offered through home automation. In bridging the cyber-physical gap, however, home automation brings a widening of the cyber attack surface of the home. Research towards analyzing and preventing security and safety failures in a smart home faces a fundamental obstacle in practice: the poor characterization of home automation usage. That is, without the knowledge of how users automate their homes, it is difficult to address several critical challenges in designing and analyzing security systems, potentially rendering solutions ineffective in actual deployments. This project aims to bridge this gap, and provide researchers, end-users, and system designers with the means to collect, generate, and analyze realistic examples of home automation usage. This approach builds upon a unique characteristic of emerging smart home platforms: the presence of "user-driven" automation in the form of trigger-action programs that users configure via platform-provided user interfaces. In particular, this project devises methods to capture and model such user-driven home automation to generate statistically significant and useful usage scenarios. The techniques that will be developed during the course of this project will allow researchers and practitioners to analyze various security, safety and privacy properties of the cyber-physical systems that comprise modern smart homes, ultimately leading to deployments of smart home Internet of Things (IoT) devices that are more secure. The project will also produce and disseminate educational materials on best practices for developing secure software with an emphasis on IoT devices, suitable for integration into existing computer literacy courses at all levels of education. In addition, the project will focus on recruiting and retaining computer science students from traditionally underrepresented categories. This project is centered on three specific goals. First, it will develop novel data collection strategies that allow end-users to easily specify routines in a flexible manner, as well as techniques based on Natural language Processing (NLP) for automatically processing and transforming the data into a format suitable for modeling. Second, it will introduce approaches for transforming routines into realistic home automation event sequences, understanding their latent properties and modeling them using well-understood language modeling techniques. Third, it will contextualize the smart home usage models to make predictions that cater to security analyses specifically and develop tools that allow for the inspection of a smart home’s state alongside the execution of predicted event sequences on real products. The techniques and models developed during the course of this project will be validated with industry partners and are expected to become instrumental for developers and researchers to understand security and privacy properties of smart homes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于家庭自动化提供的便利,智能家居产品已经非常受消费者欢迎。然而,在弥合网络与物理之间的差距时,家庭自动化带来了家庭网络攻击面的扩大。分析和预防智能家居中的安全和安全故障的研究在实践中面临着一个根本性的障碍:家庭自动化使用的不良特征。也就是说,如果不了解用户如何自动化他们的家庭,就很难解决设计和分析安全系统时的几个关键挑战,这可能会使解决方案在实际部署中无效。该项目旨在弥合这一差距,并为研究人员,最终用户和系统设计人员提供收集,生成和分析家庭自动化使用的现实示例的方法。这种方法建立在新兴智能家居平台的一个独特特征之上:以用户通过平台提供的用户界面配置的智能操作程序的形式存在“用户驱动”的自动化。特别是,该项目设计的方法来捕获和建模这种用户驱动的家庭自动化,以生成统计上显着和有用的使用场景。在该项目过程中开发的技术将使研究人员和从业人员能够分析构成现代智能家居的网络物理系统的各种安全性,安全性和隐私属性,最终导致部署更安全的智能家居物联网(IoT)设备。该项目还将制作和传播关于开发安全软件的最佳做法的教育材料,重点是物联网设备,适合纳入各级教育的现有计算机扫盲课程。此外,该项目将侧重于从传统上代表性不足的类别中招聘和留住计算机科学学生。该项目围绕三个具体目标。首先,它将开发新的数据收集策略,使最终用户能够以灵活的方式轻松指定例程,以及基于自然语言处理(NLP)的技术,用于自动处理数据并将其转换为适合建模的格式。其次,它将介绍将例程转换为现实的家庭自动化事件序列的方法,了解它们的潜在属性,并使用易于理解的语言建模技术对其进行建模。第三,它将使智能家居使用模型情境化,以做出专门迎合安全分析的预测,并开发允许检查智能家居状态以及在真实的产品上执行预测事件序列的工具。在该项目过程中开发的技术和模型将与行业合作伙伴进行验证,并有望成为开发人员和研究人员了解智能家居安全和隐私属性的工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Moran其他文献

Inflation and Growth: A New Keynesian Perspective
通货膨胀与增长:新凯恩斯主义视角
Can you swim? An exploration of measuring real and perceived water competency.
你会游泳吗?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Moran;R. Stallman;P. Kjendlie;D. Dahl;J. Blitvich;Lauren A. Petrass;G. Mcelroy;T. Goya;K. Teramoto;A. Matsui;Shuji Shimongata
  • 通讯作者:
    Shuji Shimongata
Labour Markets, Liquidity, and Monetary Policy Regimes
劳动力市场、流动性和货币政策制度
  • DOI:
    10.1111/j.0008-4085.2004.00008.x
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Andolfatto;Scott Hendry;Kevin Moran
  • 通讯作者:
    Kevin Moran
Automating Software Development for Mobile Computing Platforms
移动计算平台的自动化软件开发
Estimated DGE Models and Forecasting Accuracy: A Preliminary Investigation with Canadian Data
估计的 DGE 模型和预测精度:对加拿大数据的初步调查
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Moran;V. Dolar
  • 通讯作者:
    V. Dolar

Kevin Moran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Moran', 18)}}的其他基金

Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2132285
  • 财政年份:
    2022
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant

相似国自然基金

细梗香草活性成分CPS-B靶向MARCHF3/NEU4/CDH11通路抑制宫颈癌侵袭转移的作用机制研究
  • 批准号:
    HDMZ25H280006
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
肺炎克雷伯菌WaaLCPS连接酶相关的CPS-LPS合成通路及致病机制的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于自动深度学习的电力CPS入侵检测及安全性提升方法研究
  • 批准号:
    Z25F030003
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
先锋转录因子FOXA2调控CPS1介导尿素循环在急性肝衰竭肝性脑病中的机制研究
  • 批准号:
    82300699
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
代谢酶CPS1调控PD-L1表达重塑肝癌免疫微环境的作用及机制研究
  • 批准号:
    82303340
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
  • 批准号:
    22361004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
  • 批准号:
    82273390
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
CPS 仿真中离散事件模型与连续时间模型的分布式协同运行问题研究
  • 批准号:
    2022JJ40559
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CPS1通过减少DAG的含量而抑制肝细胞肝癌侵袭转移的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向智能交通认知的CPS计算架构与可解释深度学习模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了