NSCI SI2-SSE: Multiscale Software for Quantum Simulations of Nanostructured Materials and Devices
NSCI SI2-SSE:用于纳米结构材料和器件量子模拟的多尺度软件
基本信息
- 批准号:1740309
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational science is firmly established as a pillar of scientific discovery and technology, promising unprecedented new capabilities. The National Strategic Computing Initiative (NSCI) establishes an ambitious roadmap to advance Science and Technology (S&T) through support for sustained innovations in high performance computing and its use. Harnessing the power of millions of computer cores and/or compute accelerators (also called graphical processing units, GPUs) foreseen in future high performance computers requires a new generation of application software and algorithms, able to effectively utilize such resources and create the revolutionary S&T advances that underpin the nation's economic competitiveness. The proposed work will develop high-performance, scalable quantum simulation software for complex materials and devices, which will be portable and tunable across alternative exascale architectures. It will be able to address grand challenges in the design of quantum materials and devices, responding to one of the five strategic objectives of NSCI. Quantum materials and processes also underpin one of NSF's 10 Big Ideas for Future NSF Investments, The Quantum Leap: Leading the Next Quantum Revolution. Another important program in which materials simulation plays a key role is the Materials Genome Initiative. It seeks to "deploy advanced materials at least twice as fast at a fraction of the cost" and relies on computational materials design as the critical aspect, with computation guiding experiments. The goals of this project are to refactor and extend the open-source RMG software suite to future computer architectures at exascale, to enable transformational research on the design of quantum materials and devices from fundamental quantum-mechanical level. The RMG software will extend from desktops to the largest supercomputer systems, and will also perform well on a multitude of other systems, such as parallel computing clusters of various sizes, including those with GPUs. At the highest level of performance, it will enable predictive simulations at unprecedented scale, impact several areas of science and engineering and become a source of new discoveries and economic growth. RMG, already highly parallel and capable of multi-petaflops speeds, can provide a pathway towards reaching key NSCI goals. RMG has already been included in a benchmark suite which will be used to help select future supercomputers. At the same time, it's scalability means that it will be useful in classroom education running on students' laptops, to help individual researchers perform significant scientific or technological research on their accelerator- or GPU-equipped workstations, and, to run larger problems on a multitude of computer clusters with varying capabilities.The goals of this project are to refactor and extend the open-source RMG software suite to exascale architectures, to enable transformational research on the design of quantum materials and devices from fundamental quantum-mechanical level. The RMG software will extend from desktops to the largest supercomputer systems, and will also perform well on a multitude of other systems, such as parallel clusters of various sizes, including those with GPUs. At the highest level of performance, it will enable predictive simulations at unprecedented scale, impact several areas of science and engineering and become a source of new discoveries and economic growth. RMG, already highly parallel and capable of multi-petaflops speeds, can provide a pathway towards reaching some of key NSCI goals. It has been included just as a part of NSF's Sustained Petascale Performance Benchmarks, which will be used to select NSF's future Leadership Class supercomputers. However, it will also be useful in classroom education, running on individual students' laptops, help individual researchers perform significant scientific or technological research on their accelerator- or GPU-equipped workstations, and also run on a multitude of clusters with varying capabilities. The extensible and portable exascale-capable software tools for simulations of complex quantum materials and devices will enable many scientific and technological endeavors that are currently too difficult to pursue, including dramatically accelerated discovery and design of complex quantum materials structures, such as nanostructured energy storage materials; nanoscale biosensors for electrical sequencing of DNA and nanoscale "laboratories on a chip" for monitoring health; as well as addressing fundamental questions about quantum behavior and the manipulation of quantum systems. Analogous accelerated progress is expected in other areas of science and technology that depend on nano and meso scales that are intermediate between those of molecules and bulk solids. Medium-size simulations will be enabled on local computing platforms, with an easy migration pathway to national facilities with the same input GUI. The exascale quantum simulation software will thus become a major resource to the national community. The easy availability of desktop binaries, supported source code, and optimized binaries at national facilities will lead to a major increase in high-end usage, dramatically enlarging the number and quality of simulations. The increase in users at all levels will stimulate their contributions both by new development and though incorporation of existing code elements into various materials frameworks. The national Cyberinfrastructure Community will be engaged through SI2 Software Institutes, Blue Waters and XSEDE projects, including live tutorials at workshops, as well tutorial sessions at conferences. STEM education and interests will be addressed by recruitment of undergraduate students, visually attractive presentations at libraries and science museums, and web-based presentation modules.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science and Engineering and the Division of Materials Research in the Directorate of Mathematical and Physical Sciences.
计算科学是科学发现和技术的支柱,具有前所未有的新能力。国家战略计算计划(NSCI)制定了一个雄心勃勃的路线图,通过支持高性能计算及其使用的持续创新来推进科学技术(S&;T)。在未来的高性能计算机中,利用数以百万计的计算机核心和/或计算加速器(也称为图形处理单元,gpu)的能力,需要新一代的应用软件和算法,能够有效地利用这些资源,创造支撑国家经济竞争力的革命性技术进步。拟议的工作将为复杂材料和器件开发高性能、可扩展的量子模拟软件,该软件将在其他百亿亿级架构中便携和可调。它将能够解决量子材料和器件设计中的重大挑战,响应NSCI的五大战略目标之一。量子材料和过程也是NSF未来投资的十大理念之一,量子飞跃:引领下一次量子革命。材料模拟发挥关键作用的另一个重要项目是材料基因组计划。它寻求“以较低的成本部署至少快两倍的先进材料”,并将计算材料设计作为关键方面,以计算指导实验。该项目的目标是重构和扩展开源RMG软件套件,使其适用于未来的百亿亿级计算机架构,从而从量子力学的基础层面对量子材料和器件的设计进行变革性研究。RMG软件将从台式机扩展到最大的超级计算机系统,并且还将在许多其他系统上表现良好,例如各种大小的并行计算集群,包括那些带有gpu的系统。在最高水平的性能下,它将实现前所未有规模的预测模拟,影响科学和工程的几个领域,并成为新发现和经济增长的源泉。RMG已经具有高度并行性和每秒千万亿次的速度,可以为实现NSCI的关键目标提供一条途径。RMG已经包含在一个基准测试套件中,该套件将用于帮助选择未来的超级计算机。同时,它的可扩展性意味着它将在学生笔记本电脑上运行的课堂教育中非常有用,可以帮助个人研究人员在配备加速器或gpu的工作站上执行重要的科学或技术研究,并且可以在具有不同功能的众多计算机集群上运行更大的问题。该项目的目标是重构和扩展开源RMG软件套件到百亿亿级架构,以实现从量子力学基础层面对量子材料和器件设计的转型研究。RMG软件将从台式机扩展到最大的超级计算机系统,并且还将在许多其他系统上表现良好,例如各种大小的并行集群,包括那些带有gpu的系统。在最高水平的性能下,它将实现前所未有规模的预测模拟,影响科学和工程的几个领域,并成为新发现和经济增长的源泉。RMG已经具有高度并行性和每秒千万亿次的速度,可以为实现一些关键的NSCI目标提供途径。它已经被列入NSF的持续千兆级性能基准的一部分,这将用于选择NSF未来的领导级超级计算机。然而,它在课堂教育中也很有用,在学生个人的笔记本电脑上运行,帮助个人研究人员在配备加速器或gpu的工作站上进行重要的科学或技术研究,也可以在具有不同功能的众多集群上运行。用于模拟复杂量子材料和器件的可扩展和便携式百亿亿级软件工具将使许多目前难以追求的科学和技术努力成为可能,包括显著加速复杂量子材料结构的发现和设计,如纳米结构储能材料;用于DNA电测序的纳米级生物传感器和用于监测健康的纳米级“芯片实验室”;以及解决关于量子行为和量子系统操纵的基本问题。在其他依赖于纳米和中观尺度(介于分子和大块固体之间)的科学和技术领域,预计也会有类似的加速进展。中等规模的模拟将在本地计算平台上启用,并且可以轻松迁移到具有相同输入GUI的国家设施。因此,百亿亿次量子模拟软件将成为国家社会的主要资源。桌面二进制文件、受支持的源代码和国家设施中优化的二进制文件的容易获得性将导致高端使用的大幅增加,从而大大增加模拟的数量和质量。各级用户的增加将通过新的开发和将现有代码元素纳入各种材料框架来刺激他们的贡献。国家网络基础设施社区将通过SI2软件研究所、Blue Waters和XSEDE项目参与其中,包括研讨会上的现场教程以及会议上的教程会议。STEM教育和兴趣将通过招募本科生,在图书馆和科学博物馆进行视觉上有吸引力的演讲,以及基于网络的演讲模块来解决。该项目由计算机与信息科学与工程理事会的先进网络基础设施办公室和数学与物理科学理事会的材料研究部提供支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence of the EDIIS Algorithm for Nonlinear Equations
- DOI:10.1137/18m1171084
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Xiaojun Chen;C. Kelley
- 通讯作者:Xiaojun Chen;C. Kelley
Direct writing of heterostructures in single atomically precise graphene nanoribbons
- DOI:10.1103/physrevmaterials.3.016001
- 发表时间:2019-01-03
- 期刊:
- 影响因子:3.4
- 作者:Ma, Chuanxu;Xiao, Zhongcan;Li, An-Ping
- 通讯作者:Li, An-Ping
Ab initio investigation of the cyclodehydrogenation process for polyanthrylene transformation to graphene nanoribbons
- DOI:10.1038/s41524-019-0228-6
- 发表时间:2019-09-06
- 期刊:
- 影响因子:9.7
- 作者:Xiao, Zhongcan;Ma, Chuanxu;Bernholc, Jerzy
- 通讯作者:Bernholc, Jerzy
Design of Atomically Precise Nanoscale Negative Differential Resistance Devices
- DOI:10.1002/adts.201800172
- 发表时间:2018-10
- 期刊:
- 影响因子:3.3
- 作者:Zhongcan Xiao;Chuanxu Ma;Jingsong Huang;L. Liang;Wenchang Lu;K. Hong;B. Sumpter;An‐Ping Li;J. Bernholc
- 通讯作者:Zhongcan Xiao;Chuanxu Ma;Jingsong Huang;L. Liang;Wenchang Lu;K. Hong;B. Sumpter;An‐Ping Li;J. Bernholc
Numerical methods for nonlinear equations
- DOI:10.1017/s0962492917000113
- 发表时间:2018-05
- 期刊:
- 影响因子:14.2
- 作者:C. Kelley
- 通讯作者:C. Kelley
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerzy Bernholc其他文献
Jerzy Bernholc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerzy Bernholc', 18)}}的其他基金
Petaflops simulation and design of nanoscale materials and devices
纳米级材料和器件的千万亿次模拟和设计
- 批准号:
1615114 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Multiscale Software for Quantum Simulations in Materials Design, Nano Science and Technology
SI2-SSE:材料设计、纳米科学与技术中量子模拟的多尺度软件
- 批准号:
1339844 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Petascale quantum simulations of nano systems and biomolecules
纳米系统和生物分子的千万亿级量子模拟
- 批准号:
1036215 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Software for Quantum Simulations in Nano Science and Technology
合作研究:纳米科学技术中量子模拟的多尺度软件
- 批准号:
0749320 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
The Ultimate Strength of Carbon Nanotubes
碳纳米管的极限强度
- 批准号:
9710489 - 财政年份:1997
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Electronic Properties and Growth of Semiconductors
半导体的电子特性和生长
- 批准号:
9408437 - 财政年份:1994
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Electronic Properties and Growth of Thin Film Diamond
薄膜金刚石的电子特性和生长
- 批准号:
9100063 - 财政年份:1991
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
燃烧合成(Mo,Nb)Si2材料中含Nb相的微观组织演变与强韧化机制
- 批准号:51202289
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSCI: SI2-SSE: An Extensible Model to Support Scalable Checkpoint-Restart for DMTCP Across Multiple Disciplines
NSCI:SI2-SSE:支持跨多个学科的 DMTCP 可扩展检查点重启的可扩展模型
- 批准号:
1740218 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: GenApp - A Transformative Generalized Application Cyberinfrastructure
SI2-SSE:GenApp - 变革性通用应用程序网络基础设施
- 批准号:
1912444 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: A parallel computing framework for large-scale real-space and real-time TDDFT excited-states calculations
SI2-SSE:大规模实空间和实时 TDDFT 激发态计算的并行计算框架
- 批准号:
1739423 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Worflow Users, Developers, and Researchers
协作研究:SI2-SSE:WRENCH:面向科学 Worflow 用户、开发人员和研究人员的模拟工作台
- 批准号:
1642369 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter
SI2-SSE:封闭和开放系统中的纠缠量子动力学,用于量子模拟器开发和合成量子物质探索的开源软件包
- 批准号:
1740130 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Highly Efficient and Scalable Software for Coarse-Grained Molecular Dynamics
SI2-SSE:高效且可扩展的粗粒度分子动力学软件
- 批准号:
1740211 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
- 批准号:
1740212 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSCI: SI2-SSE: Time Stepping and Exchange-Correlation Modules for Massively Parallel Real-Time Time-Dependent DFT
合作研究:NSCI:SI2-SSE:大规模并行实时瞬态 DFT 的时间步进和交换相关模块
- 批准号:
1740219 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
- 批准号:
1740282 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: An open source multi-physics platform to advance fundamental understanding of plasma physics and enable impactful application of plasma systems
合作研究:SI2-SSE:一个开源多物理平台,可促进对等离子体物理学的基本理解并实现等离子体系统的有效应用
- 批准号:
1740300 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant














{{item.name}}会员




