SI2-SSE: Software Elements to Enable Immersive Simulation

SI2-SSE:实现沉浸式仿真的软件元素

基本信息

  • 批准号:
    1740330
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Parallel computers have grown so powerful that they are now able to solve extremely complex fluid flow or structures problems in seconds. Unfortunately, it may take a researcher many hours or even days to set up a complex problem before it can be solved. Furthermore it may take hours or often weeks to extract insight from the volume of data the simulation produces, if using standard techniques. For discovery and design questions, where the next variant of the problem requires a change to the problem definition, these delays disrupt the flow of experimentation and the associated intuition and learning about how the change in the problem definition relates to a change in the solution. To address this issue, a paradigm shift, referred to here as "immersive simulation", is planned to enable new approaches to problem definition editing that allow practitioners to interact with the simulations (visual model iteration) in a manner where they can dynamically experience the influence of parameter variations from a single, live, and ongoing simulation. Examples include a surgeon virtually altering the shape of a bypass graft on one computer monitor and then virtually observing the change in the blood flow patterns not only within the bypass but throughout the vascular system. Likewise, an engineer altering the shape of a virtual car to see if the flow pattern improves or worsens. These applied research examples have parallels in fundamental research where live insight into the flow physics of unsteady, turbulent flows and their sensitivity to live parameter changes will be made available to researchers for the first time. Visually connecting the solution change to the visually iterated geometry and/or parameter change will enable a new age of intuition-driven discovery and design. This paradigm shift will also be incorporated into foundational undergraduate and graduate courses to enable deeper, experiential-based learning. The central goal of this project is to advance state-of-the-art tools into generic components that, when integrated, will make the following capabilities available to any partial differential equation solver: 1) live, reconfigurable visualization of ongoing simulations, 2) live, reconfigurable problem definition to allow the dynamic solution insight to guide the choice of key problem parameters, 3) real-time parameter sensitivity feedback, 4) adaptive simulation control to account for discretization errors and geometry changes, and 5) integration and demonstration of reliable, immersive simulation. The first communities that these software components will be developed with include cardiovascular flow and aerodynamic flow control. They have already articulated a need for software to more rapidly explore the performance of their systems under a broad parameter space with intuitive and quantitative parameter sensitivity. This software will enable not only design (applied research e.g., exploring bypass vs. stent type and placement for a particular patient's diseased vasculature or flow control actuator placement), but also discovery (fundamental research e.g., explore physics of flow response to discover completely new surgical procedures and flow control processes and devices). This twofold and complementary software application will have a similar impact on education, where foundational courses will use the integrated software modules to create immersive simulations that build intuition about flow physics, and then reinforce that learning in an applied nature in capstone design courses. While the ideas will be prototyped and proven within the field of fluid dynamics, they will be developed generally, with sustainable software engineering, for easy adoption by other fields that make use of simulation. The successful development, integration, and demonstration of these tools at scale will transform massively parallel simulation from a series of I/O-intensive steps to live, reconfigurable discovery using carefully designed interfaces that blaze the trail for all simulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
平行计算机已经变得如此强大,以至于它们现在能够在几秒钟内解决极其复杂的流体流或结构问题。 不幸的是,研究人员可能需要数小时甚至几天才能解决一个复杂的问题。 此外,如果使用标准技术,则从模拟产生的数据量中提取洞察力可能需要数小时或几周。对于发现和设计问题,问题的下一个变体需要对问题定义进行更改,这些延迟破坏了实验的流以及相关的直觉和学习问题定义中的变化与解决方案中的变化之间的关系。为了解决这个问题,计划在这里称为“沉浸式仿真”的范式转移,以启用问题定义编辑的新方法,以使从业人员能够与模拟(视觉模型迭代)相互作用,以动态地体验单个,现场和正在进行的模拟的参数变化的影响。 例如,外科医生实际上改变了一个计算机监视器上旁路移植物的形状,然后实际上观察了血流模式的变化,不仅在旁路内,而且在整个血管系统中。同样,工程师改变了虚拟汽车的形状,以查看流动模式是否改善或恶化。这些应用的研究示例在基础研究中具有相似之处,在这些研究中,对不稳定,动荡流的流动物理学的实时见解及其对实时参数变化的敏感性将首次提供给研究人员。在视觉上将解决方案更改连接到视觉迭代的几何形状和/或参数更改将使直觉驱动的发现和设计具有新的时代。这种范式的转变也将纳入基础本科和研究生课程中,以实现更深入的,基于体验的学习。 该项目的核心目标是将最新工具推广到通用组件中,这些组件将在整合时,将使任何部分差分方程式求解器可用以下功能可用:1)持续模拟的可视化可视化,2)实时,实时,可重新配置的问题,可使问题定义可允许动态sim insign to Drogiendic sim启用键盘启用,3)实时参数,3)强度参数,3)强度参数,3)强度参数,3)强度参数,3)强度访问。离散误差和几何变化,以及5)可靠的沉浸式模拟的整合和演示。这些软件组件将通过使用心血管流量和空气动力流控制的第一个社区。他们已经阐明了对软件的需求,以更快地探索其系统在具有直观和定量参数敏感性的广泛参数空间下的性能。该软件不仅将启用设计(例如应用研究,探索旁路与支架类型以及特定患者患病的脉管系统或流量控制执行器的放置),还可以进行发现(例如,基本研究(例如,探索流动响应的物理学),以发现全新的外科手术程序和流动控制过程和流动控制过程和设备)。这个双重和互补的软件应用程序将对教育产生类似的影响,基础课程将使用集成的软件模块来创建沉浸式的模拟,以建立有关流动物理的直觉,然后在Capstone Design课程中加强在应用性质中学习。 尽管这些想法将在流体动力学领域进行原型和证明,但它们通常会通过可持续的软件工程开发,以便于使用模拟的其他领域采用。 The successful development, integration, and demonstration of these tools at scale will tr​​ansform massively parallel simulation from a series of I/O-intensive steps to live, reconfigurable discovery using carefully designed interfaces that blaze the trail for all simulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interface Tracking Investigation of Geometric Effects on the Bubbly Flow in PWR Subchannels
  • DOI:
    10.1080/00295639.2018.1499280
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    J. Fang;J. Cambareri;M. Rasquin;A. Gouws;R. Balakrishnan;K. Jansen;I. Bolotnov
  • 通讯作者:
    J. Fang;J. Cambareri;M. Rasquin;A. Gouws;R. Balakrishnan;K. Jansen;I. Bolotnov
Bi-fidelity reduced polynomial chaos expansion for uncertainty quantification
用于不确定性量化的双保真减少多项式混沌展开
  • DOI:
    10.1007/s00466-021-02096-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Newberry, Felix;Hampton, Jerrad;Jansen, Kenneth;Doostan, Alireza
  • 通讯作者:
    Doostan, Alireza
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Jansen其他文献

Kenneth Jansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Jansen', 18)}}的其他基金

Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
  • 批准号:
    1743178
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
A Data-centric Approach to Turbulence Simulation
以数据为中心的湍流模拟方法
  • 批准号:
    1710670
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Software Frameworks to Enable Parallel, Adaptive, Multiscale Simulation of Turbulence
职业:实现并行、自适应、多尺度湍流模拟的软件框架
  • 批准号:
    9985340
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

化脓性链球菌分泌性酯酶Sse抑制LC3相关吞噬促其侵袭的机制研究
  • 批准号:
    82202525
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
化脓性链球菌分泌性酯酶Sse抑制LC3相关吞噬促其侵袭的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳能电池Cu2ZnSn(SSe)4/CdS界面过渡层结构模拟及缺陷态消除研究
  • 批准号:
    12274114
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
太阳能电池Cu2ZnSn(SSe)4/CdS界面过渡层结构模拟及缺陷态消除研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
掺杂实现Cu2ZnSn(SSe)4吸收层表层稳定弱n型特性的第一性原理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter
SI2-SSE:封闭和开放系统中的纠缠量子动力学,用于量子模拟器开发和合成量子物质探索的开源软件包
  • 批准号:
    1740130
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: Highly Efficient and Scalable Software for Coarse-Grained Molecular Dynamics
SI2-SSE:高效且可扩展的粗粒度分子动力学软件
  • 批准号:
    1740211
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSCI SI2-SSE: Multiscale Software for Quantum Simulations of Nanostructured Materials and Devices
NSCI SI2-SSE:用于纳米结构材料和器件量子模拟的多尺度软件
  • 批准号:
    1740309
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: Software Framework for Strongly Correlated Materials: from DFT to DMFT
SI2-SSE:协作研究:强相关材料的软件框架:从 DFT 到 DMFT
  • 批准号:
    1740112
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: Software Framework for Strongly Correlated Materials: from DFT to DMFT
SI2-SSE:协作研究:强相关材料的软件框架:从 DFT 到 DMFT
  • 批准号:
    1740111
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了