A Data-centric Approach to Turbulence Simulation

以数据为中心的湍流模拟方法

基本信息

  • 批准号:
    1710670
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Turbulence or turbulent flow is commonly observed in many everyday phenomena, such as airflow over a vehicle, billowing clouds, rising smoke or fast-flowing waters. Understanding and accurately modeling turbulent flow is important for design in applications as diverse as transportation (planes, cars, etc.), energy generation (wind turbines or more traditional power plants), and manufacturing. Turbulence evolves through interaction of a broad range of length and time scales, posing significant challenges to engineers who model turbulent fluid flow using computer simulations. High fidelity computational models, which resolve turbulent motions, can require several months of time on the largest supercomputer to simulate even a relatively simple flow. By contrast, low fidelity models that attempt to predict only the net effects of the turbulence can give results on complicated flows in seconds but the prediction has low accuracy for many important flows.  To effectively use simulations of turbulence for design applications, engineers typically require flow solutions for thousands of problem-defining parameter combinations. The need for a large number of cases typically necessitates the use of lower fidelity models to keep cost and time feasible. This proposal involves using the more detailed information from a select, small number of higher fidelity simulations together with a full set of inexpensive low fidelity simulations to collectively achieve a substantially more accurate prediction for the thousands of parameter variations needed. The scale-resolving simulations proposed lend themselves to animations of fluid structures. While a full understanding is beyond students at the K-12 levels, simulations that show macro- and small-scale fluid structures are expected to be highly motivating to science, technology, engineering, and mathematics (STEM) areas. Therefore, visualization results from this research are being packaged for direct outreach activities in coordination with the Broadening Opportunity through Leadership and Diversity(BOLD) Center at the University of Colorado Boulder.This research project involves three main objectives: 1) using data-driven machine learning from scale-resolving simulations to improve scale-modeling closures, 2) developing multi-fidelity models that fuse data from O(1000) low-cost simulations and O(20) higher-cost simulations to achieve an accuracy approaching that of the higher-cost simulations for all O(1000) parameter combinations at substantially reduced cost, and 3) combining these two approaches. These developments are being demonstrated on flows that are currently known to be beyond the predictive capacity of the low-cost models. The focus is on adverse pressure gradient flows, including those that lead to flow separation. The simulations performed in this project will advance the state-of-the-art in adverse pressure gradient flow simulation. Specifically, simulations are being executed at momentum Reynolds numbers of 6,000 for direct numerical simulation, 30,000 for wall-resolved large eddy simulation, and 150,000 for wall-modeled large eddy simulation. The data from all simulations is being be made available to the science and engineering community to enable further analysis and fundamental insight.
湍流或湍流在许多日常现象中都很常见,如车辆上方的气流、滚滚的云、上升的烟雾或湍急的水流。了解湍流并对其进行精确建模对于交通运输(飞机、汽车等)、能源生产(风力涡轮机或更传统的发电厂)和制造等各种应用中的设计都很重要。湍流通过广泛的长度和时间尺度的相互作用而演变,这给使用计算机模拟来模拟湍流流动的工程师们带来了巨大的挑战。解决湍流运动的高保真计算模型在最大的超级计算机上可能需要几个月的时间来模拟即使是相对简单的流动。相比之下,试图仅预测湍流净影响的低保真模型可以在几秒钟内给出复杂流动的结果,但对许多重要流动的预测精度较低。为了有效地将湍流模拟用于设计应用,工程师通常需要数千个定义问题的参数组合的流动解决方案。由于需要大量的案例,通常需要使用较低的保真度模型来保持成本和时间的可行性。这一建议涉及使用来自精选的少量高保真模拟的更详细的信息,以及全套廉价的低保真模拟,以共同实现对所需的数千个参数变化的显著更准确的预测。所提出的比例分辨率模拟适用于流体结构的动画。虽然K-12水平的学生无法完全理解,但显示宏观和小规模流体结构的模拟有望对科学、技术、工程和数学(STEM)领域产生极大的激励作用。因此,这项研究的可视化结果正在与科罗拉多博尔德大学的领导力与多样性(BOLD)中心合作,用于直接扩展活动。该研究项目涉及三个主要目标:1)使用来自尺度解析模拟的数据驱动的机器学习来改进尺度建模闭包;2)开发多保真模型,融合来自O(1000)低成本模拟和O(20)高成本模拟的数据,以显著降低的成本实现接近所有O(1000)参数组合的高成本模拟的精度;以及3)结合这两种方法。这些发展在目前已知超出低成本模型预测能力的流动上得到了证明。重点是不利的压力梯度流动,包括那些导致流动分离的流动。本项目所进行的模拟将推动逆压梯度流动模拟的发展。具体地说,直接数值模拟的动量雷诺数为6,000,壁面分辨大涡模拟为30,000,壁面模型大涡模拟为150,000。所有模拟的数据都将提供给科学和工程界,以便进行进一步的分析和基本的洞察。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing and improving the accuracy of synthetic turbulence generation
  • DOI:
    10.1017/jfm.2020.859
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. W. Patterson;R. Balin;K. Jansen
  • 通讯作者:
    J. W. Patterson;R. Balin;K. Jansen
Reduced-Basis Multifidelity Approach for Efficient Parametric Study of NACA Airfoils
用于 NACA 翼型高效参数研究的降基多重保真度方法
  • DOI:
    10.2514/1.j057452
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Skinner, Ryan W.;Doostan, Alireza;Peters, Eric L.;Evans, John A.;Jansen, Kenneth E.
  • 通讯作者:
    Jansen, Kenneth E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Jansen其他文献

Kenneth Jansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Jansen', 18)}}的其他基金

Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
  • 批准号:
    1743178
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
SI2-SSE: Software Elements to Enable Immersive Simulation
SI2-SSE:实现沉浸式仿真的软件元素
  • 批准号:
    1740330
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Software Frameworks to Enable Parallel, Adaptive, Multiscale Simulation of Turbulence
职业:实现并行、自适应、多尺度湍流模拟的软件框架
  • 批准号:
    9985340
  • 财政年份:
    2000
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于CCN的新互联网架构体系对比分析及其路由缓冲策略研究
  • 批准号:
    61103027
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
网格中以情境为中心的应用自动化研究
  • 批准号:
    60703054
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

UK Privacy Enhancing Technologies Challenge Prize - Phase 3 Project title: Pandemic Response Modelling with Privacy Enhancing Technology: a place-centric approach
英国隐私增强技术挑战奖 - 第 3 阶段 项目名称:利用隐私增强技术进行流行病响应建模:以地点为中心的方法
  • 批准号:
    900262
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
A Patient-Centric Approach to Advance Functional Precision Oncology
以患者为中心的方法推进功能性精准肿瘤学
  • 批准号:
    10721205
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Improving the social acceptance of smart technologies: A people-centric approach for sustainable smart waste management and smart mobility technologies
提高智能技术的社会接受度:以人为本的可持续智能废物管理和智能移动技术方法
  • 批准号:
    23K11548
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pandemic Response Modelling with Privacy Enhancing Technology: a place-centric approach
采用隐私增强技术的流行病响应建模:以地点为中心的方法
  • 批准号:
    10048012
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    CR&D Bilateral
A Quest for Harmony between Privacy and Personalization: A User-Centric Approach
寻求隐私与个性化之间的和谐:以用户为中心的方法
  • 批准号:
    RGPIN-2018-05884
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: SHF: Small: Rethinking Performance Variation for Emerging Applications - An Application-centric and Cross-layer Approach
协作研究:SHF:小型:重新思考新兴应用程序的性能变化 - 以应用程序为中心的跨层方法
  • 批准号:
    2134202
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Rethinking Performance Variation for Emerging Applications - An Application-centric and Cross-layer Approach
协作研究:SHF:小型:重新思考新兴应用程序的性能变化 - 以应用程序为中心的跨层方法
  • 批准号:
    2134203
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Foundational Elements of an Alternate Scientific Approach to Developing Veteran-centric Precision Cognitive Restoration Interventions
开发以退伍军人为中心的精确认知恢复干预措施的替代科学方法的基本要素
  • 批准号:
    10542362
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
Foundational Elements of an Alternate Scientific Approach to Developing Veteran-centric Precision Cognitive Restoration Interventions
开发以退伍军人为中心的精确认知恢复干预措施的替代科学方法的基本要素
  • 批准号:
    10368616
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
data-driven approach to occupant-centric building operations
以数据驱动的方法实现以居住者为中心的建筑运营
  • 批准号:
    567056-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了