BIGDATA: IA: Collaborative Research: From Bytes to Watts - A Data Science Solution to Improve Wind Energy Reliability and Operation

BIGDATA:IA:协作研究:从字节到瓦特 - 提高风能可靠性和运行的数据科学解决方案

基本信息

项目摘要

The collective efforts in aerospace, civil, electrical, and mechanical engineering areas have led to remarkable progresses in wind energy. Larger turbines are designed and installed, and wind farms are nowadays built at locations where wind is even more intermittent and maintenance equipment is less accessible. This adds new challenges to ensuring operational reliability. To cope with these challenges, along with the rapid advancement in microelectronics, modern wind farms are equipped with a large number and variety of sensors, including, at the turbine level, anemometers, tachometers, accelerometers, thermometers, strain sensors, and power meters, and at the farm level, anemometers, vanes, sonars, thermometers, humidity meters, pressure meters, among others. It is worth noting that all these data are currently analyzed/utilized only in their respective domains. The big data challenges in this project include how to best use spatio-temporal data for wind forecast, how to use data of different nature (wind, power, load etc.) and data of different sources (physical data versus computer simulation data) for power production assessment in a computationally efficient manner, and finally how to integrate these three sets of solutions into a reliable and efficient computational platform. The proposed research and education activities will make a paradigm shift in the wind industry by demonstrating how dramatically data science innovations can benefit the industry. The PIs will disseminate the research findings through classroom teaching, journal/conference publications, industry workshops, and data/software sharing. The summer internship opportunities and undergraduate research help train the next generation workforce to be better versed with data science methodologies.The critical barrier to cost effective wind power and its general adoption is partly rooted in wind stochasticity, severely complicating wind power production optimization and cost reduction. The long-term viability of wind energy hinges upon a good understanding of its production reliability, which is affected in turn by the predictability of wind and power productivity of wind turbines. Furthermore, the productivity of a wind turbine comprises two aspects: its ability of converting wind into power during its operation and the availability of wind turbines. Three inter-related research efforts will enhance wind energy reliability and productivity): (1) spatio-temporal analysis (for wind forecast) (2) conditional density estimation (for wind-to-power conversion assessment); and (3) importance sampling (for turbine reliability assessment and improvement). Significant data resourced provided by industry partners in the research, coupled with models and computational resources, will enable better prediction of wind profiles and utilization. In addition, the team will develop dedicated reconfigurable field programmable gate array (FPGA) processors that will be 50 to 500 times faster than general-purpose CPUs for both on-site and central control processing and have small form-factor, low cost and energy efficient to enable agile development under severe outdoor conditions at wind farms.
航空航天,民用,电气和机械工程领域的集体努力导致了风能的显着进步。较大的涡轮机是设计和安装的,如今,风电场是在风更间歇性且维护设备较低的地方建造的。这增加了确保运营可靠性的新挑战。 To cope with these challenges, along with the rapid advancement in microelectronics, modern wind farms are equipped with a large number and variety of sensors, including, at the turbine level, anemometers, tachometers, accelerometers, thermometers, strain sensors, and power meters, and at the farm level, anemometers, vanes, sonars, thermometers, humidity meters, pressure meters, among others.值得注意的是,目前仅在其各自的域中对所有这些数据进行分析/使用。该项目中的大数据挑战包括如何最好地使用时空数据进行风预测,如何使用不同性质(风,功率,负载等)以及不同源(物理数据与计算机模拟数据)的数据以计算有效的方式进行功率生产评估,以及如何将这三组解决方案集成到可靠的计算和有效的计算平台中。拟议的研究和教育活动将通过证明数据科学创新如何使该行业受益,从而在风能行业发生范式转变。 PI将通过课堂教学,期刊/会议出版物,行业研讨会和数据/软件共享来传播研究结果。暑期实习机会和本科研究有助于培训下一代劳动力,以更好地使用数据科学方法。具有成本效益的风能及其一般采用的关键障碍部分植根于风力随机性,严重复杂风力发电的优化和降低成本。风能的长期生存能力取决于对其生产可靠性的充分了解,这反过来又受风力涡轮机的风能和电力生产力的可预测性影响。此外,风力涡轮机的生产力包括两个方面:在操作过程中将风转换为动力的能力和风力涡轮机的可用性。三项相关研究工作将提高风能的可靠性和生产率):(1)时空分析(用于风向预测)(2)条件密度估计(用于风向功率转换评估); (3)重要性采样(用于涡轮的可靠性评估和改进)。行业合作伙伴在研究中提供的大量数据资源,再加上模型和计算资源,可以更好地预测风概况和利用率。 此外,该团队将开发专用的可编程可编程栅极阵列(FPGA)处理器,该处理器将比通用CPU快50至500倍,用于现场和中央控制处理,并且在风力场的严重户外情况下,在严重的户外情况下,较小的形式因子,低成本和能源效率低。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments
黑盒计算机实验随机模拟的不确定性量化
Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models
使用随机黑盒计算机模型进行极端分位数估计的自适应重要性采样
  • DOI:
    10.1002/nav.21938
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pan, Qiyun;Byon, Eunshin;Ko, Young Myoung;Lam, Henry
  • 通讯作者:
    Lam, Henry
Adaptive Extreme Load Estimation in Wind Turbines
风力涡轮机的自适应极限负载估计
Uncertainty Quantification for Extreme Quantile Estimation With Stochastic Computer Models
使用随机计算机模型进行极端分位数估计的不确定性量化
  • DOI:
    10.1109/tr.2020.2980448
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Pan, Qiyun;Ko, Young Myoung;Byon, Eunshin
  • 通讯作者:
    Byon, Eunshin
Data-driven parameter calibration in wake models
  • DOI:
    10.2514/6.2018-2017
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingjie Liu;E. Byon;M. Plumlee
  • 通讯作者:
    Bingjie Liu;E. Byon;M. Plumlee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eunshin Byon其他文献

Eunshin Byon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eunshin Byon', 18)}}的其他基金

Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Framework for Assessing the Impact of Extreme Heat and Drought on Urban Energy Production and Consumption
合作研究:评估极端高温和干旱对城市能源生产和消费影响的框架
  • 批准号:
    1662553
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Collaborative Degradation Analysis for Enterprise-Level Maintenance Management via Dynamic Segmentation
协作研究:通过动态细分进行企业级维护管理的协作退化分析
  • 批准号:
    1536924
  • 财政年份:
    2015
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Regularized Learning Enabled Monitoring and Control for Wind Power Systems
风电系统的常规学习监控和控制
  • 批准号:
    1362513
  • 财政年份:
    2014
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Ia型超新星及相关特殊天体研究
  • 批准号:
    12333008
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
    12203042
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
    32201791
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
  • 批准号:
    12203029
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了