CAREER: Common Links in Algorithms and Complexity

职业:算法和复杂性的常见联系

基本信息

  • 批准号:
    1741615
  • 负责人:
  • 金额:
    $ 50.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-20 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

The field of algorithm design builds clever programs that can quickly solve computational problems of interest. The field of complexity theory mathematically proves "lower bounds," showing that no such clever program exists for (other) core problems. Intuitively, it appears that these two fields work on polar-opposite tasks. The major goal of this project is to discover counter-intuitive new connections between algorithm design and complexity theory, and to study the scientific consequences of the bridges built by these connections. It is hard to overestimate the potential impact---societal, scientific, and otherwise---of a theoretical framework which would lead to a fine-grained understanding of what computers can and cannot do. This project is focused on exploring concrete steps towards a better understanding, via studying links between the seemingly opposite tasks of algorithms and lower bounds. Another goal of the project is to bring complexity research closer to real-world computing, and to introduce practitioners to aspects of complexity that will impact their work. A final goal is educational outreach, through online forums dedicated to learning computer science, teaching summer school courses, and collaboration with the media on communicating theoretical computer science (including links between algorithms and lower bounds) to the public.The PI seeks common links between algorithms and complexity: counter-intuitive similarities and bridges which will lead to greater insight into both areas. A central question in computer science is the famous P versus NP open problem, which is about the difficulty of combinatorial problems which admit short solutions. Such problems can always be solved via ?brute force?, trying all possible solutions. Can brute force always be replaced with a cleverer search method? This question is a major one; no satisfactory answers are known, and concrete answers seem far away. The conventional wisdom is that in general, brute force cannot be entirely avoided, but it is still mathematically possible that most natural search problems can be solved extremely rapidly, without any brute force. Computational lower bounds are among the great scientific mysteries of our time: there are many conjectures and beliefs about them, but concrete results are few. Moreover, the theory is hampered by ?complexity barriers? which show that most known proof methods are incapable of proving strong lower bounds. The PI's long-term objective is to help discover and develop new ways of thinking that will demystify lower bounds, and elucidate the limits of possibilities of computing. The PI hypothesizes that an algorithmic perspective on lower bounds is the key: for example, earlier work of the PI shows that algorithms for the circuit satisfiability problem (which slightly beat brute force search) imply circuit complexity lower bounds. The PI has developed several new links within the past few years, and has proposed many more to be investigated. Among the various angles explored in this project, the potential scientific applications are vast, ranging from logical circuit design, to network algorithms, to improved hardware and software testing, to better nearest-neighbor search (with its own applications in computer vision, DNA sequencing, and machine learning), and to cryptography and security.
算法设计领域建立了聪明的程序,可以快速解决感兴趣的计算问题。复杂性理论领域用数学方法证明了“下限”,表明对于(其他)核心问题,不存在这样聪明的程序。直觉上,这两个领域似乎在极性相反的任务上工作。该项目的主要目标是发现算法设计和复杂性理论之间的反直觉的新联系,并研究这些联系所建立的桥梁的科学后果。很难高估一个理论框架的潜在影响--社会,科学和其他方面--它将导致对计算机能做什么和不能做什么的精细理解。这个项目的重点是探索更好地理解的具体步骤,通过研究算法和下界的看似相反的任务之间的联系。该项目的另一个目标是使复杂性研究更接近现实世界的计算,并向从业者介绍复杂性的各个方面,这些方面将影响他们的工作。最终目标是教育推广,通过在线论坛致力于学习计算机科学,教授暑期学校课程,并与媒体合作向公众传播理论计算机科学(包括算法和下界之间的联系)。PI寻求算法和复杂性之间的共同联系:反直觉的相似性和桥梁,这将导致对这两个领域的更深入的了解。计算机科学中的一个中心问题是著名的P对NP开放问题,这是关于允许短解的组合问题的困难。这些问题总是可以通过?蛮力?尝试所有可能的解决方案。暴力搜索是否总是可以被更聪明的搜索方法所取代?这是一个重大的问题;没有令人满意的答案,具体的答案似乎很遥远。传统观点认为,一般来说,暴力是无法完全避免的,但在数学上,大多数自然搜索问题仍然可以非常快速地解决,而不需要任何暴力。计算下限是我们这个时代最大的科学谜团之一:关于它有许多解释和信念,但具体的结果却很少。此外,该理论是阻碍?复杂性障碍?这表明大多数已知的证明方法不能证明强下界。PI的长期目标是帮助发现和发展新的思维方式,以揭开下限的神秘面纱,并阐明计算可能性的极限。PI假设下界的算法观点是关键:例如,PI的早期工作表明,电路可满足性问题的算法(略优于蛮力搜索)暗示电路复杂度下界。在过去的几年里,PI已经开发了几个新的链接,并提出了更多的调查。在这个项目中探索的各个角度中,潜在的科学应用是巨大的,从逻辑电路设计到网络算法,到改进的硬件和软件测试,到更好的最近邻搜索(在计算机视觉,DNA测序和机器学习中有自己的应用),以及密码学和安全性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Williams其他文献

Is Violence Critique?
暴力是批评吗?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Ryan Williams
  • 通讯作者:
    Ryan Williams
Sharp threshold results for computational complexity
计算复杂度的尖锐阈值结果
Inductive Time-Space Lower Bounds for Sat and Related Problems
Sat 及相关问题的归纳时空下界
  • DOI:
    10.1007/s00037-007-0221-1
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ryan Williams
  • 通讯作者:
    Ryan Williams
Improved Parameterized Algorithms for above Average Constraint Satisfaction
改进的参数化算法可实现高于平均水平的约束满足
All-pairs bottleneck paths for general graphs in truly sub-cubic time
真正亚立方时间内一般图的全对瓶颈路径

Ryan Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Williams', 18)}}的其他基金

Examining relationships among teacher professional learning and associated teacher and student outcomes in math and science: A meta-analytic approach to mediation and moderation
检查教师专业学习与数学和科学方面相关教师和学生成果之间的关系:调解和调节的元分析方法
  • 批准号:
    2300544
  • 财政年份:
    2023
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Robots that Plan Interactions, Come and Go, and Build Trust
职业:规划交互、来来去去并建立信任的机器人
  • 批准号:
    2046770
  • 财政年份:
    2021
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
AF: Small: Lower Bounds in Complexity Theory Via Algorithms
AF:小:通过算法实现复杂性理论的下界
  • 批准号:
    2127597
  • 财政年份:
    2021
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
CPS: Medium: Computation-Aware Autonomy for Timely and Resilient Multi-Agent Systems
CPS:中:及时且有弹性的多代理系统的计算感知自治
  • 批准号:
    1932074
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
NRI: INT: Balancing Collaboration and Autonomy for Multi-Robot Multi-Human Search and Rescue
NRI:INT:平衡多机器人多人搜索和救援的协作与自主
  • 批准号:
    1830414
  • 财政年份:
    2018
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
  • 批准号:
    1657235
  • 财政年份:
    2017
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1741638
  • 财政年份:
    2017
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1617580
  • 财政年份:
    2016
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
NRI: Coordinated Detection and Tracking of Hazardous Agents with Aerial and Aquatic Robots to Inform Emergency Responders
NRI:与空中和水上机器人协调检测和跟踪危险物质,以通知紧急救援人员
  • 批准号:
    1637915
  • 财政年份:
    2016
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
  • 批准号:
    1552651
  • 财政年份:
    2015
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant

相似国自然基金

青藏高原高寒植物酚类物质分配格局的研究:基于“Common garden”实验
  • 批准号:
    31200306
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

持続可能性の実現へ向けた幼児期の日本型Common Worlds Pedagogyの研究
为实现可持续发展而进行的日式幼儿共同世界教育学研究
  • 批准号:
    24K05787
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
  • 批准号:
    MR/Y013891/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Research Grant
企業統治における機関投資家のあり方――共通株主(Common Ownership)の視点
机构投资者在公司治理中的作用——共同所有权视角
  • 批准号:
    24K16271
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Eye-Tracking Study: Exploring Integrated Reading Tasks in the New Format of the English Common Test for Japanese University Admissions
眼动追踪研究:探索日本大学入学英语通用考试新形式中的综合阅读任务
  • 批准号:
    24K04032
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the nature of the symbiosis between reef-building corals and common Endozoicomonas bacteria
阐明造礁珊瑚与常见内生单胞菌之间共生的本质
  • 批准号:
    2342561
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
Pathfinder Parks: Implementing a common framework to track & accelerate progress towards Net Zero in the South Downs National Park using the OnePlanet Platform.
Pathfinder Parks:实施通用框架来跟踪
  • 批准号:
    10093123
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Demonstrator
SCC-CIVIC-FA Track B: Piloting a Decarbonization-Ready Common Home Assessment
SCC-CIVIC-FA 轨道 B:试点脱碳就绪的共同家庭评估
  • 批准号:
    2321865
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
Pioneer Parks: Modelling a common framework to track and accelerate progress towards Net Zero in National Parks using the One Planet Platform
先锋公园:使用 One Planet 平台建立一个通用框架来跟踪和加速国家公园实现净零排放的进展
  • 批准号:
    10061261
  • 财政年份:
    2023
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Feasibility Studies
First Year Common Training
第一年共同培训
  • 批准号:
    2888863
  • 财政年份:
    2023
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Studentship
First Year Common Training
第一年共同培训
  • 批准号:
    2888935
  • 财政年份:
    2023
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了