CAREER: Robots that Plan Interactions, Come and Go, and Build Trust
职业:规划交互、来来去去并建立信任的机器人
基本信息
- 批准号:2046770
- 负责人:
- 金额:$ 56.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
After decades of fundamental advances, we are beginning to see meaningful influence of autonomous robots on crucial social and economic problems. While tremendously exciting, these advances are primarily seen in single robot systems, a natural progression given the highly complex nature of multi-robot systems. In order to scale to real-world problems, this Faculty Early Career Development (CAREER) project advances multi-robot system theory to allow robots to plan their interactions intelligently, gracefully enter and exit systems, and participate in trustful decision-making processes with other robots and human teammates. In addition, the theoretical work in this project applies to multi-robot multi-human search and rescue. Indeed, when robots and humans search for a lost person in large wilderness, the theoretical advancements listed above will prove invaluable. Finally, this project includes a comprehensive education and outreach plan consisting of: curriculum focused on autonomy that crosses departmental boundaries; pedagogical programs with an emphasis on persons with a disability; K-12 academic experiences for underrepresented students in engineering; and channels for national and international education and outreach.This project focuses on developing new theory and technologies, including: a framework based on independence systems for modeling robot interaction structures over time with sampling and gradient-based methods for efficiently computing interaction plans; a combinatorial optimization framework for modeling optimally open multi-robot systems yielding plans for robots entering and exiting systems while guaranteeing the correctness of underlying collaborative objectives; a framework for trust-building in collaborative multi-robot multi-human decision-making based on multi-armed bandits, a concept we call the trustful multi-armed bandit; a set of search and rescue case studies for evaluating our research thrusts; and a portable, indoor/outdoor, multi-scale testbed for experimental validation of heterogeneous multi-robot teams. This project addresses fundamental challenges in four areas critical to the flexibility, scalability, and resilience of autonomous coordination: (1) systems that plan their interactions in a manner that adapts to high-level mission objectives and the deployment environment, while respecting low-level collaboration requirements; (2) systems whose composition changes over time while remaining resilient to such changes; (3) systems that select actions that actively build trust from other systems over time; and (4) systems that are prototyped and tested under realistic conditions across varying scales of deployment.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经过几十年的根本性进步,我们开始看到自主机器人对关键的社会和经济问题产生有意义的影响。 虽然非常令人兴奋,但这些进步主要出现在单机器人系统中,鉴于多机器人系统的高度复杂性,这是一个自然的进展。为了扩展到现实世界的问题,这个教师早期职业发展(CAREER)项目推进了多机器人系统理论,允许机器人智能地规划他们的交互,优雅地进入和退出系统,并与其他机器人和人类队友一起参与可信的决策过程。 此外,本项目的理论工作也适用于多机器人多人搜救。 事实上,当机器人和人类在大荒野中寻找迷路的人时,上面列出的理论进步将被证明是无价的。 最后,该项目包括一个全面的教育和推广计划,包括:跨部门自主性课程;以残疾人为重点的教学计划;为工程专业代表性不足的学生提供K-12学术经验;以及国家和国际教育和推广渠道。一个基于独立系统的框架,用于随着时间的推移用采样和基于梯度的方法对机器人交互结构进行建模,以有效地计算交互计划;一个组合优化框架,用于对最优开放的多机器人系统进行建模,产生机器人进入和退出系统的计划,同时保证底层协作目标的正确性;一个框架的信任建立在协作多机器人多人决策的基础上多武装土匪,我们称之为可信的多武装土匪的概念;一组搜索和救援案例研究,用于评估我们的研究推力;和一个便携式,室内/室外,多尺度的实验平台,用于实验验证异构多机器人团队。 该项目解决了对自主协调的灵活性、可扩展性和弹性至关重要的四个领域的基本挑战:(1)以适应高级别使命目标和部署环境的方式规划其交互的系统,同时尊重低级别协作要求;(2)组成随时间变化的系统,同时保持对此类变化的弹性;(3)随着时间的推移,从其他系统中选择积极建立信任的动作的系统;以及(4)在不同部署规模的现实条件下原型化和测试的系统。该项目由跨部门机器人基础研究计划支持,由工程局(ENG)和计算机与信息科学与工程局(CISE)共同管理和资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Agent Intermittent Interaction Planning via Sequential Greedy Selections Over Position Samples
通过位置样本的顺序贪婪选择进行多智能体间歇性交互规划
- DOI:10.1109/lra.2020.3047788
- 发表时间:2021
- 期刊:
- 影响因子:5.2
- 作者:Heintzman, Larkin;Williams, Ryan K.
- 通讯作者:Williams, Ryan K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Williams其他文献
Sharp threshold results for computational complexity
计算复杂度的尖锐阈值结果
- DOI:
10.1145/3357713.3384283 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Lijie Chen;Ce Jin;Ryan Williams - 通讯作者:
Ryan Williams
Inductive Time-Space Lower Bounds for Sat and Related Problems
Sat 及相关问题的归纳时空下界
- DOI:
10.1007/s00037-007-0221-1 - 发表时间:
2006 - 期刊:
- 影响因子:1.4
- 作者:
Ryan Williams - 通讯作者:
Ryan Williams
Improved Parameterized Algorithms for above Average Constraint Satisfaction
改进的参数化算法可实现高于平均水平的约束满足
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Eun Jung Kim;Ryan Williams - 通讯作者:
Ryan Williams
All-pairs bottleneck paths for general graphs in truly sub-cubic time
真正亚立方时间内一般图的全对瓶颈路径
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
V. V. Williams;Ryan Williams;R. Yuster - 通讯作者:
R. Yuster
Ryan Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Williams', 18)}}的其他基金
Examining relationships among teacher professional learning and associated teacher and student outcomes in math and science: A meta-analytic approach to mediation and moderation
检查教师专业学习与数学和科学方面相关教师和学生成果之间的关系:调解和调节的元分析方法
- 批准号:
2300544 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
AF: Small: Lower Bounds in Complexity Theory Via Algorithms
AF:小:通过算法实现复杂性理论的下界
- 批准号:
2127597 - 财政年份:2021
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
CPS: Medium: Computation-Aware Autonomy for Timely and Resilient Multi-Agent Systems
CPS:中:及时且有弹性的多代理系统的计算感知自治
- 批准号:
1932074 - 财政年份:2019
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
NRI: INT: Balancing Collaboration and Autonomy for Multi-Robot Multi-Human Search and Rescue
NRI:INT:平衡多机器人多人搜索和救援的协作与自主
- 批准号:
1830414 - 财政年份:2018
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
- 批准号:
1741615 - 财政年份:2017
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
- 批准号:
1657235 - 财政年份:2017
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
- 批准号:
1741638 - 财政年份:2017
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
- 批准号:
1617580 - 财政年份:2016
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
NRI: Coordinated Detection and Tracking of Hazardous Agents with Aerial and Aquatic Robots to Inform Emergency Responders
NRI:与空中和水上机器人协调检测和跟踪危险物质,以通知紧急救援人员
- 批准号:
1637915 - 财政年份:2016
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
- 批准号:
1552651 - 财政年份:2015
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
相似海外基金
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 56.99万 - 项目类别:
Studentship
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
- 批准号:
FT230100021 - 财政年份:2025
- 资助金额:
$ 56.99万 - 项目类别:
ARC Future Fellowships
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
Supporting Elementary Students’ Computer Science Skills and Interest through Engagement with Low-cost, Adaptable Robots
通过与低成本、适应性强的机器人互动来支持小学生的计算机科学技能和兴趣
- 批准号:
2342489 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
- 批准号:
2345769 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Usability and Ergonomics of wearable robots
可穿戴机器人的可用性和人体工程学
- 批准号:
10087481 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Collaborative R&D
CAREER: Acoustic Vortex Robots for Contactless 6-Degrees-of-Freedom Object Manipulation
职业:用于非接触式 6 自由度物体操纵的声学涡旋机器人
- 批准号:
2340016 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
STTR Phase I: Weed Control Via Terradynamically Robust Robots
STTR 第一阶段:通过地形动力学鲁棒机器人控制杂草
- 批准号:
2335553 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
AerialHitches: Forming and Controlling Hitches for Fully Autonomous Transportation Using Aerial Robots with Cables
空中挂钩:使用带有电缆的空中机器人形成和控制全自动运输的挂钩
- 批准号:
2322840 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
CAREER: Safe Autonomy for Soft Robots
职业:软机器人的安全自主
- 批准号:
2340111 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant