CAREER: Robots that Plan Interactions, Come and Go, and Build Trust

职业:规划交互、来来去去并建立信任的机器人

基本信息

项目摘要

After decades of fundamental advances, we are beginning to see meaningful influence of autonomous robots on crucial social and economic problems. While tremendously exciting, these advances are primarily seen in single robot systems, a natural progression given the highly complex nature of multi-robot systems. In order to scale to real-world problems, this Faculty Early Career Development (CAREER) project advances multi-robot system theory to allow robots to plan their interactions intelligently, gracefully enter and exit systems, and participate in trustful decision-making processes with other robots and human teammates. In addition, the theoretical work in this project applies to multi-robot multi-human search and rescue. Indeed, when robots and humans search for a lost person in large wilderness, the theoretical advancements listed above will prove invaluable. Finally, this project includes a comprehensive education and outreach plan consisting of: curriculum focused on autonomy that crosses departmental boundaries; pedagogical programs with an emphasis on persons with a disability; K-12 academic experiences for underrepresented students in engineering; and channels for national and international education and outreach.This project focuses on developing new theory and technologies, including: a framework based on independence systems for modeling robot interaction structures over time with sampling and gradient-based methods for efficiently computing interaction plans; a combinatorial optimization framework for modeling optimally open multi-robot systems yielding plans for robots entering and exiting systems while guaranteeing the correctness of underlying collaborative objectives; a framework for trust-building in collaborative multi-robot multi-human decision-making based on multi-armed bandits, a concept we call the trustful multi-armed bandit; a set of search and rescue case studies for evaluating our research thrusts; and a portable, indoor/outdoor, multi-scale testbed for experimental validation of heterogeneous multi-robot teams. This project addresses fundamental challenges in four areas critical to the flexibility, scalability, and resilience of autonomous coordination: (1) systems that plan their interactions in a manner that adapts to high-level mission objectives and the deployment environment, while respecting low-level collaboration requirements; (2) systems whose composition changes over time while remaining resilient to such changes; (3) systems that select actions that actively build trust from other systems over time; and (4) systems that are prototyped and tested under realistic conditions across varying scales of deployment.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经过数十年的基本进步,我们开始看到自主机器人对关键社会和经济问题的有意义的影响。 尽管令人兴奋,但这些进步主要是在单个机器人系统中看到的,但鉴于多机器人系统的高度复杂性质,自然的进展。为了扩展到现实世界中的问题,这位教师早期职业发展(职业)项目的进步多机器人系统理论使机器人能够智能,优雅地进入和退出系统,并与其他机器人和人类队友一起智能地计划其互动,并参与信任的决策过程。 此外,该项目的理论工作适用于多机器人多人搜索和救援。 的确,当机器人和人类在大荒野中寻找失落的人时,上面列出的理论进步将是无价的。 最后,该项目包括一项全面的教育和外展计划,该计划包括:课程侧重于跨越部门界限的自主权;强调残疾人的教学计划; K-12的学术经验为工程专业的学生提供了不足的学生;国家和国际教育和推广的渠道。本项目着重于开发新的理论和技术,包括:基于独立系统的框架,用于建模机器人交互结构,随着时间的流逝,采样和基于梯度的方法有效地计算交互计划;一个组合优化框架,用于建模最佳打开多机器人系统,为机器人提供进入和退出系统的计划,同时保证基本协作目标的正确性;一个基于多军强盗的多机器人多人类决策的信任建设框架,我们称之为信任的多臂强盗概念;一组搜救案例研究,用于评估我们的研究推力;以及一个便携式,室内/室外的多尺度测试床,用于实验验证异质多机器人团队。 该项目解决了对自主协调的灵活性,可伸缩性和弹性至关重要的四个领域的基本挑战:(1)以适应高级任务目标和部署环境的方式计划其相互作用的系统,同时尊重低级协作要求; (2)其成分随时间变化的系统,同时保持对这种变化的弹性; (3)选择随着时间的推移从其他系统中积极建立信任的系统; (4)在不同规模的部署范围内进行原型和测试的系统。该项目得到了机器人技术计划中的跨领域基础研究的支持,该项目由工程和计算机和信息科学和工程局共同管理和资助。影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Agent Intermittent Interaction Planning via Sequential Greedy Selections Over Position Samples
通过位置样本的顺序贪婪选择进行多智能体间歇性交互规划
  • DOI:
    10.1109/lra.2020.3047788
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Heintzman, Larkin;Williams, Ryan K.
  • 通讯作者:
    Williams, Ryan K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Williams其他文献

Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting
促进干预效果知识积累:探索标准化统计方法和效应量报告的策略
  • DOI:
    10.3102/0013189x211051319
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Joseph A. Taylor;T. Pigott;Ryan Williams
  • 通讯作者:
    Ryan Williams
All-pairs bottleneck paths for general graphs in truly sub-cubic time
真正亚立方时间内一般图的全对瓶颈路径
Utility of in-session assessments during cognitive behavioral therapy for depression after traumatic brain injury: Results from a randomized controlled trial.
创伤性脑损伤后抑郁症认知行为治疗期间评估的效用:随机对照试验的结果。
  • DOI:
    10.3233/nre-230218
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Jennifer M. Erickson;Ryan Williams;C. Bombardier;J. Fann
  • 通讯作者:
    J. Fann
Natural proofs versus derandomization
自然证明与去随机化
  • DOI:
    10.1145/2488608.2488612
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Williams
  • 通讯作者:
    Ryan Williams
Sharp threshold results for computational complexity
计算复杂度的尖锐阈值结果

Ryan Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Williams', 18)}}的其他基金

Examining relationships among teacher professional learning and associated teacher and student outcomes in math and science: A meta-analytic approach to mediation and moderation
检查教师专业学习与数学和科学方面相关教师和学生成果之间的关系:调解和调节的元分析方法
  • 批准号:
    2300544
  • 财政年份:
    2023
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Continuing Grant
AF: Small: Lower Bounds in Complexity Theory Via Algorithms
AF:小:通过算法实现复杂性理论的下界
  • 批准号:
    2127597
  • 财政年份:
    2021
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
CPS: Medium: Computation-Aware Autonomy for Timely and Resilient Multi-Agent Systems
CPS:中:及时且有弹性的多代理系统的计算感知自治
  • 批准号:
    1932074
  • 财政年份:
    2019
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
NRI: INT: Balancing Collaboration and Autonomy for Multi-Robot Multi-Human Search and Rescue
NRI:INT:平衡多机器人多人搜索和救援的协作与自主
  • 批准号:
    1830414
  • 财政年份:
    2018
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
  • 批准号:
    1741615
  • 财政年份:
    2017
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Continuing Grant
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
  • 批准号:
    1657235
  • 财政年份:
    2017
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1741638
  • 财政年份:
    2017
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
NRI: Coordinated Detection and Tracking of Hazardous Agents with Aerial and Aquatic Robots to Inform Emergency Responders
NRI:与空中和水上机器人协调检测和跟踪危险物质,以通知紧急救援人员
  • 批准号:
    1637915
  • 财政年份:
    2016
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1617580
  • 财政年份:
    2016
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
  • 批准号:
    1552651
  • 财政年份:
    2015
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抛光机器人柔性变刚度并联执行器宏微协调运动规划与主被动柔顺控制
  • 批准号:
    52305016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
杂乱堆叠场景下的机器人视觉伺服自适应抓取研究
  • 批准号:
    52365065
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向水下崎岖地形辅助探测的仿生蛇机器人流固耦合与自适应控制研究
  • 批准号:
    62303117
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Studentship
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 56.99万
  • 项目类别:
    ARC Future Fellowships
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Continuing Grant
Supporting Elementary Students’ Computer Science Skills and Interest through Engagement with Low-cost, Adaptable Robots
通过与低成本、适应性强的机器人互动来支持小学生的计算机科学技能和兴趣
  • 批准号:
    2342489
  • 财政年份:
    2024
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
  • 批准号:
    2345769
  • 财政年份:
    2024
  • 资助金额:
    $ 56.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了