EAGER: Training Computers and Humans to Detect Misinformation by Combining Computational and Theoretical Analysis

EAGER:通过结合计算和理论分析来训练计算机和人类检测错误信息

基本信息

  • 批准号:
    1742702
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Awareness of misinformation online is becoming an increasingly important issue, especially when information is presented in the format of a news story, because (a) people may over-trust content that looks like news and fail to critically evaluate it, and (b) such stories can be easily spread, amplifying the effect of misinformation. Using machine learning methods to analyze a large database of articles labeled as more or less likely to contain misinformation, along with theoretical analyses from the fields of communication, psychology, and information science, the project team will first characterize what distinguishes stories that are likely to contain misinformation from others. These characteristics will be used to build a tool that calls out characteristics of a given article that are known to correlate with misinformation; they will also be used to develop training materials to help people make these judgments. The tool and training materials will be tested through a series of experiments in which articles are evaluated by the tool and by people both before and after undergoing training. The goal is to have a positive impact on online discourse by improving both readers' and moderators' ability to reduce the impact of misinformation campaigns. The team will make the models, tools, and training materials publicly available for others to use in research, in classes, and online.The team will use two main approaches to characterize articles that are more likely to contain misinformation. The first is a concept explication approach from the social sciences based on a deep analysis of research writing around information dissemination and evaluation. The second is a supervised machine learning approach to be trained on large datasets of labeled articles, including verified examples of misinformation. Both approaches will consider characteristics of the content; of its visual presentation; of the people who create, consume, and share it; and of the networks it moves through. These models will be translated into a set of weighted rules that combine the insights from the two approaches, then instantiated in Markov Logic Networks. These leverage the strengths of both first order logic and probabilistic graphic models, allow for a variety of efficient inference methods, and have been applied to a number of related problems; the models will be evaluated offline against test data using standard machine learning techniques. Finally, the team will develop training materials based on existing work from the International Federation of Library Associations and Institutions and on heuristic guidelines derived from the modeling work in the first two tasks, evaluate them through the experiments described earlier, and disseminate them online along with the developed models.
意识到网络上的错误信息正成为一个越来越重要的问题,尤其是当信息以新闻故事的形式呈现时,因为(a)人们可能会过度信任看起来像新闻的内容,而无法对其进行批判性评估,(b)这样的故事很容易传播,放大了错误信息的影响。项目团队将使用机器学习方法分析一个大型数据库,该数据库包含被标记为或多或少可能包含错误信息的文章,以及来自通信、心理学和信息科学领域的理论分析,首先描述可能包含错误信息的故事与其他故事的区别。这些特征将被用于构建一个工具,该工具可以调用已知与错误信息相关的给定文章的特征;它们还将用于开发培训材料,以帮助人们做出这些判断。工具和培训材料将通过一系列实验进行测试,在这些实验中,工具和人员在接受培训之前和之后对文章进行评估。其目标是通过提高读者和版主减少错误信息活动影响的能力,对在线话语产生积极影响。该团队将公开模型、工具和培训材料,供其他人在研究、课堂和在线中使用。该团队将使用两种主要方法来描述更有可能包含错误信息的文章。第一种是基于对围绕信息传播和评价的研究写作进行深入分析的社会科学概念解释方法。第二种是有监督的机器学习方法,可以在标记文章的大型数据集上进行训练,包括经过验证的错误信息示例。两种方法都会考虑内容的特点;它的视觉表现;创造、消费和分享财富的人;以及它所经过的网络。这些模型将被转化为一组加权规则,这些规则结合了两种方法的见解,然后在马尔可夫逻辑网络中实例化。这些利用了一阶逻辑和概率图形模型的优势,允许各种有效的推理方法,并已应用于许多相关问题;这些模型将使用标准的机器学习技术根据测试数据进行离线评估。最后,该团队将根据国际图书馆协会和机构联合会的现有工作以及前两项任务中建模工作得出的启发式指导方针开发培训材料,通过前面描述的实验对其进行评估,并将其与开发的模型一起在线传播。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Authorship Attribution for Neural Text Generation
  • DOI:
    10.18653/v1/2020.emnlp-main.673
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adaku Uchendu;Thai Le;Kai Shu;Dongwon Lee
  • 通讯作者:
    Adaku Uchendu;Thai Le;Kai Shu;Dongwon Lee
MALCOM: Generating Malicious Comments to Attack Neural Fake News Detection Models
TOMATO: A Topic-Wise Multi-Task Sparsity Model
PROMO for Interpretable Personalized Social Emotion Mining
  • DOI:
    10.1007/978-3-030-67658-2_15
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Zhang;Dongwon Lee
  • 通讯作者:
    Jason Zhang;Dongwon Lee
CoAID: COVID-19 Healthcare Misinformation Dataset
CoAID:COVID-19 医疗保健错误信息数据集
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cui, Limeng;Lee, Dongwon
  • 通讯作者:
    Lee, Dongwon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongwon Lee其他文献

Compensation as a Tool: Addressing Gender Inequality Among Women IT Professionals
以薪酬为工具:解决女性 IT 专业人员中的性别不平等问题
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Zhao;Dongwon Lee;Sunil Mithas
  • 通讯作者:
    Sunil Mithas
A Multi-Level Theory Approach to Understanding Price Rigidity in Internet Retailing
理解互联网零售价格刚性的多层次理论方法
  • DOI:
    10.17705/1jais.00230
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Kauffman;Dongwon Lee
  • 通讯作者:
    Dongwon Lee
Pragmatic XML Access Control Using Off-the-Shelf RDBMS
使用现成的 RDBMS 进行实用的 XML 访问控制
Understanding emotions in SNS images from posters' perspectives
从海报的角度理解 SNS 图像中的情感
Impedance Characterization and Modeling of Subcellular to Micro-sized Electrodes with Varying Materials and PEDOT:PSS Coating for Bioelectrical Interfaces
用于生物电接口的具有不同材料和 PEDOT:PSS 涂层的亚细胞至微米电极的阻抗表征和建模
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Adam Y. Wang;Doohwan Jung;Dongwon Lee;Hua Wang
  • 通讯作者:
    Hua Wang

Dongwon Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongwon Lee', 18)}}的其他基金

Collaborative Research: CISE-MSI: RCBP-RF: SaTC: Building Research Capacity in AI Based Anomaly Detection in Cybersecurity
合作研究:CISE-MSI:RCBP-RF:SaTC:网络安全中基于人工智能的异常检测的研究能力建设
  • 批准号:
    2131144
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: A Framework for Developing Attributable Cybersecurity Case Studies
EAGER:SaTC-EDU:开发可归因网络安全案例研究的框架
  • 批准号:
    2114824
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
  • 批准号:
    2029976
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Machine Learning in Cybersecurity
REU 网站:网络安全中的机器学习
  • 批准号:
    1950491
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Vertical Search Engine and Graph Homomorphism for Enhancing the Cybersecurity Workforce
用于增强网络安全劳动力的垂直搜索引擎和图同态
  • 批准号:
    1934782
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940076
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Developing and Evaluating Fraud Informatics Curriculum among Institutions in the Appalachian Region
开发和评估阿巴拉契亚地区机构之间的欺诈信息学课程
  • 批准号:
    1820609
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Penn State's CyberCorps; Scholarship for Service Program
宾夕法尼亚州立大学的 Cyber​​Corps;
  • 批准号:
    1663343
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: User-Centered Multiparty Access Control for Collective Content Management
职业:以用户为中心的多方访问控制,用于集体内容管理
  • 批准号:
    1453080
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SBE TWC: Small: Collaborative: Privacy Protection in Social Networks: Bridging the Gap Between User Perception and Privacy Enforcement
SBE TWC:小型:协作:社交网络中的隐私保护:弥合用户感知和隐私执行之间的差距
  • 批准号:
    1422215
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
  • 批准号:
    IC230100001
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Industrial Transformation Training Centres
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Training Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Project Incubation: Training Undergraduates in Collaborative Research Ethics
项目孵化:培养本科生合作研究伦理
  • 批准号:
    2316154
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: ASL-English Bilingual Cognitive and Educational Neuroscience Training and Research Experience (ASL-English Bilingual CENTRE)
REU网站:ASL-英语双语认知和教育神经科学培训和研究经验(ASL-英语双语中心)
  • 批准号:
    2349454
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了