Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
基本信息
- 批准号:2029976
- 负责人:
- 金额:$ 27.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In vehicle-based spatial crowdsourcing (VSC), requesters can outsource their tasks to a group of vehicles, which are required to physically move to tasks' locations to perform services or tasks. To promote a cost-effective task distribution, vehicles need to disclose their location information to VSC servers. Location sharing however raises serious privacy concerns related not only to whereabouts of the vehicles but also to sensitive information such as drivers’ home/working address, sexual preferences, financial status, etc. Current privacy protection mechanisms for location-services include location obfuscation methods according to mobility patterns projected on a 2-dimensional plane, wherein users can move in arbitrary directions without any restriction. Obfuscation algorithms based on a 2-dimensional plane are unable to provide strong privacy guarantees of vehicles whose mobility is restricted by road networks, since road networks and traffic patterns facilitate vehicle tracking and trajectory estimation. This research project aims to develop new location privacy protection techniques by considering vehicles’ realistic mobility features, and consequently lead to a more secure and trustworthy computing environment in VSC. This project paves the way for a more realistic body of work on location privacy, particularly regarding location-based services (LBSs). As privacy concerns are still among the main obstacles for mobile users to participate in many advanced LBSs, this project is poised to contribute to the wider adoption of LBSs for many applications (e.g. location-based recommendation systems). In addition, the project provides a set of diverse and interesting topics for undergraduate and graduate students and outreach activities for the community. The project consists of three tasks. First, the project starts with developing new adversarial models to capture the network-constrained mobility features of multiple vehicles operating over roads. Vehicles’ mobility is described by a Bayesian network, i.e., the exact and the reported locations of vehicles are considered as hidden and observable states, respectively, and the spatial correlation between hidden states can be learned from the road network environment and traffic flow information. Second, as a countermeasure for the adversarial models, the project develops a new location obfuscation paradigm that can effectively protect vehicles' location privacy without compromising quality-of-service (QoS), even assuming that adversaries can leverage vehicles’ mobility features for inference attacks. Since the impact of location obfuscation on both privacy level and QoS vary significantly over different road segments, the new location obfuscation methods are designed to be adaptive to various local road network conditions. Finally, considering the scalability and the dynamics of VSC, the project applies distributed and parallel computing techniques (e.g., optimization decomposition) to guarantee the obfuscation algorithms to be implemented in a time-efficient manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在基于车辆的空间众包(VSC)中,请求者可以将他们的任务外包给一组车辆,这些车辆需要实际移动到任务的位置来执行服务或任务。为了促进经济有效的任务分配,车辆需要向VSC服务器公开其位置信息。然而,位置共享引发了严重的隐私问题,不仅涉及车辆的位置,还涉及驾驶员的家庭/工作地址、性取向、财务状况等敏感信息。当前位置服务的隐私保护机制包括根据投影在二维平面上的移动模式进行位置混淆的方法,其中用户可以在不受任何限制的情况下向任意方向移动。基于二维平面的模糊算法无法为受路网限制的车辆提供强大的隐私保证,因为路网和交通模式有利于车辆的跟踪和轨迹估计。本研究项目旨在通过考虑车辆的实际移动特性,开发新的位置隐私保护技术,从而在VSC中建立一个更安全、更可信的计算环境。这个项目为更现实的位置隐私工作铺平了道路,特别是关于基于位置的服务(lbs)。由于隐私问题仍然是移动用户参与许多高级lbs的主要障碍之一,因此该项目准备为lbs在许多应用程序(例如基于位置的推荐系统)中的广泛采用做出贡献。此外,该项目为本科生和研究生提供了一套多样化和有趣的主题,并为社区提供了外展活动。该项目包括三个任务。首先,该项目从开发新的对抗模型开始,以捕获在道路上运行的多辆汽车的网络约束移动特性。车辆的移动性由贝叶斯网络描述,即将车辆的准确位置和报告位置分别视为隐藏状态和可观察状态,隐藏状态之间的空间相关性可以从道路网络环境和交通流信息中学习。其次,作为对抗模型的对策,该项目开发了一种新的位置混淆范式,即使假设对手可以利用车辆的移动性特征进行推理攻击,该范式也可以在不影响服务质量(QoS)的情况下有效保护车辆的位置隐私。由于位置混淆对隐私级别和QoS的影响在不同路段上差异很大,因此设计了新的位置混淆方法以适应不同的局部路网条件。最后,考虑到VSC的可扩展性和动态性,该项目采用分布式和并行计算技术(如优化分解)来保证混淆算法以高效的方式实现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongwon Lee其他文献
Compensation as a Tool: Addressing Gender Inequality Among Women IT Professionals
以薪酬为工具:解决女性 IT 专业人员中的性别不平等问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yao Zhao;Dongwon Lee;Sunil Mithas - 通讯作者:
Sunil Mithas
A Multi-Level Theory Approach to Understanding Price Rigidity in Internet Retailing
理解互联网零售价格刚性的多层次理论方法
- DOI:
10.17705/1jais.00230 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Kauffman;Dongwon Lee - 通讯作者:
Dongwon Lee
Pragmatic XML Access Control Using Off-the-Shelf RDBMS
使用现成的 RDBMS 进行实用的 XML 访问控制
- DOI:
10.1007/978-3-540-74835-9_5 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Bo Luo;Dongwon Lee;Peng Liu - 通讯作者:
Peng Liu
Understanding emotions in SNS images from posters' perspectives
从海报的角度理解 SNS 图像中的情感
- DOI:
10.1145/3341105.3373923 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Junho Song;Kyungsik Han;Dongwon Lee;Sang - 通讯作者:
Sang
Impedance Characterization and Modeling of Subcellular to Micro-sized Electrodes with Varying Materials and PEDOT:PSS Coating for Bioelectrical Interfaces
用于生物电接口的具有不同材料和 PEDOT:PSS 涂层的亚细胞至微米电极的阻抗表征和建模
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.7
- 作者:
Adam Y. Wang;Doohwan Jung;Dongwon Lee;Hua Wang - 通讯作者:
Hua Wang
Dongwon Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongwon Lee', 18)}}的其他基金
Collaborative Research: CISE-MSI: RCBP-RF: SaTC: Building Research Capacity in AI Based Anomaly Detection in Cybersecurity
合作研究:CISE-MSI:RCBP-RF:SaTC:网络安全中基于人工智能的异常检测的研究能力建设
- 批准号:
2131144 - 财政年份:2022
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: A Framework for Developing Attributable Cybersecurity Case Studies
EAGER:SaTC-EDU:开发可归因网络安全案例研究的框架
- 批准号:
2114824 - 财政年份:2021
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
REU Site: Machine Learning in Cybersecurity
REU 网站:网络安全中的机器学习
- 批准号:
1950491 - 财政年份:2020
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Vertical Search Engine and Graph Homomorphism for Enhancing the Cybersecurity Workforce
用于增强网络安全劳动力的垂直搜索引擎和图同态
- 批准号:
1934782 - 财政年份:2019
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
- 批准号:
1940076 - 财政年份:2019
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Developing and Evaluating Fraud Informatics Curriculum among Institutions in the Appalachian Region
开发和评估阿巴拉契亚地区机构之间的欺诈信息学课程
- 批准号:
1820609 - 财政年份:2018
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Penn State's CyberCorps; Scholarship for Service Program
宾夕法尼亚州立大学的 CyberCorps;
- 批准号:
1663343 - 财政年份:2017
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
EAGER: Training Computers and Humans to Detect Misinformation by Combining Computational and Theoretical Analysis
EAGER:通过结合计算和理论分析来训练计算机和人类检测错误信息
- 批准号:
1742702 - 财政年份:2017
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
CAREER: User-Centered Multiparty Access Control for Collective Content Management
职业:以用户为中心的多方访问控制,用于集体内容管理
- 批准号:
1453080 - 财政年份:2015
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
SBE TWC: Small: Collaborative: Privacy Protection in Social Networks: Bridging the Gap Between User Perception and Privacy Enforcement
SBE TWC:小型:协作:社交网络中的隐私保护:弥合用户感知和隐私执行之间的差距
- 批准号:
1422215 - 财政年份:2014
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant