Collaborative Research: CISE-MSI: RCBP-RF: SaTC: Building Research Capacity in AI Based Anomaly Detection in Cybersecurity
合作研究:CISE-MSI:RCBP-RF:SaTC:网络安全中基于人工智能的异常检测的研究能力建设
基本信息
- 批准号:2131144
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).This collaborative project between Tuskegee University (TU), a HBCU institution, and the Pennsylvania State University (PSU), an R1 research-intensive institution, is to jointly promote research and education excellence in cybersecurity through the research and development of advanced network intrusion detection solutions to accurately and quickly detect intrusion attacks -- i.e., unauthorized activities on a network that involve stealing valuable resources and/or jeopardize the security of the network. In particular, the team’s solutions will be based on an AI based anomaly detection framework, treating intrusion attacks as rare or anomalous observations that deviate from other observations, exploiting recent advancements in machine learning, natural language processing, and data science techniques to detect these deviations. Based on the research results and collaboration efforts, the project team will improve TU’s research capacity in cybersecurity, machine learning, and data science, and enhance the curriculum for teaching these topics and latest findings to undergraduate and graduate students at both TU and PSU.In this project, the team will explore how to advance existing anomaly detection systems (ADS) through investigating ways to exploit and advance state-of-the-art methods in data science and machine learning in the context of network intrusion detection. For instance, the team will explore the recent successes in detecting subtle misinformation using advanced techniques (e.g., data augmentation via generative adversarial networks, co-attention networks, few-shot learning, and adversarial examples) by the PSU team and extend/apply them to other intrusion detection tasks. The improved ADS to be developed will include (1) novel strategies for collecting, labeling, enhancing, and augmenting data for advanced analytics, (2) solutions for data representation, feature/representation learning, and classification of system behaviors, and (3) an implementation framework for developing ADS tools. The team expects the new techniques to help achieve state-of-the-art accuracy in network intrusion detection with low false-positive rates. Further, the project will provide research opportunities for people from historically underrepresented groups in computing that will enable students to pursue graduate studies in cybersecurity and machine learning.This project is jointly funded by the Computer and Information Science and Engineering Minority-Serving Institutions Research Expansion Program (CISE-MSI) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。该合作项目由HBCU机构塔斯基吉大学(TU)和R1研究密集型机构宾夕法尼亚州立大学(PSU)共同开展,旨在通过研发先进的网络入侵检测解决方案,从而准确、快速地检测入侵攻击,从而共同推动网络安全领域的研究和教育卓越性。窃取有价值的资源和/或危害网络安全的网络上未经授权的活动。特别是,该团队的解决方案将基于基于人工智能的异常检测框架,将入侵攻击视为偏离其他观察结果的罕见或异常观察,利用机器学习,自然语言处理和数据科学技术的最新进展来检测这些偏差。基于研究成果和合作努力,项目团队将提高TU在网络安全,机器学习和数据科学方面的研究能力,并加强向TU和PSU的本科生和研究生教授这些主题和最新发现的课程。在这个项目中,该团队将探索如何在网络入侵检测的背景下,通过研究利用和推进数据科学和机器学习中最先进的方法,来推进现有的异常检测系统(ADS)。例如,该团队将探索PSU团队最近在使用先进技术(例如,通过生成对抗网络、共同关注网络、少量学习和对抗示例进行数据增强)检测微妙错误信息方面取得的成功,并将其扩展/应用于其他入侵检测任务。将要开发的改进的ADS将包括(1)用于收集、标记、增强和增加高级分析数据的新策略,(2)用于数据表示、特征/表示学习和系统行为分类的解决方案,以及(3)用于开发ADS工具的实现框架。该团队希望新技术能够帮助在低误报率的情况下实现最先进的网络入侵检测精度。此外,该项目将为计算机领域历史上代表性不足的群体提供研究机会,使学生能够在网络安全和机器学习方面进行研究生学习。本项目由计算机与信息科学与工程少数民族服务机构研究扩展计划(CISE-MSI)和促进竞争研究既定计划(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attribution and Obfuscation of Neural Text Authorship: A Data Mining Perspective
- DOI:10.1145/3606274.3606276
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Adaku Uchendu;Thai Le;Dongwon Lee
- 通讯作者:Adaku Uchendu;Thai Le;Dongwon Lee
UPTON: Preventing Authorship Leakage from Public Text Release via Data Poisoning
- DOI:10.18653/v1/2023.findings-emnlp.800
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Ziyao Wang;Thai Le;Dongwon Lee
- 通讯作者:Ziyao Wang;Thai Le;Dongwon Lee
Fighting Fire with Fire: The Dual Role of LLMs in Crafting and Detecting Elusive Disinformation
以毒攻毒:法学硕士在制作和检测难以捉摸的虚假信息方面的双重作用
- DOI:10.18653/v1/2023.emnlp-main.883
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lucas, Jason;Uchendu, Adaku;Yamashita, Michiharu;Lee, Jooyoung;Rohatgi, Shaurya;Lee, Dongwon
- 通讯作者:Lee, Dongwon
Information Operations in Turkey: Manufacturing Resilience with Free Twitter Accounts
土耳其的信息运营:通过免费 Twitter 帐户实现制造弹性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Merhi, Maya Merhi;Rajtmajer, Sarah;Lee, Dongwon
- 通讯作者:Lee, Dongwon
MULTITuDE: Large-Scale Multilingual Machine-Generated Text Detection Benchmark
MULTITuDE:大规模多语言机器生成的文本检测基准
- DOI:10.18653/v1/2023.emnlp-main.616
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Macko, Dominik;Moro, Robert;Uchendu, Adaku;Lucas, Jason;Yamashita, Michiharu;Pikuliak, Matúš;Srba, Ivan;Le, Thai;Lee, Dongwon;Simko, Jakub
- 通讯作者:Simko, Jakub
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongwon Lee其他文献
Compensation as a Tool: Addressing Gender Inequality Among Women IT Professionals
以薪酬为工具:解决女性 IT 专业人员中的性别不平等问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yao Zhao;Dongwon Lee;Sunil Mithas - 通讯作者:
Sunil Mithas
A Multi-Level Theory Approach to Understanding Price Rigidity in Internet Retailing
理解互联网零售价格刚性的多层次理论方法
- DOI:
10.17705/1jais.00230 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Kauffman;Dongwon Lee - 通讯作者:
Dongwon Lee
Pragmatic XML Access Control Using Off-the-Shelf RDBMS
使用现成的 RDBMS 进行实用的 XML 访问控制
- DOI:
10.1007/978-3-540-74835-9_5 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Bo Luo;Dongwon Lee;Peng Liu - 通讯作者:
Peng Liu
Understanding emotions in SNS images from posters' perspectives
从海报的角度理解 SNS 图像中的情感
- DOI:
10.1145/3341105.3373923 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Junho Song;Kyungsik Han;Dongwon Lee;Sang - 通讯作者:
Sang
Impedance Characterization and Modeling of Subcellular to Micro-sized Electrodes with Varying Materials and PEDOT:PSS Coating for Bioelectrical Interfaces
用于生物电接口的具有不同材料和 PEDOT:PSS 涂层的亚细胞至微米电极的阻抗表征和建模
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.7
- 作者:
Adam Y. Wang;Doohwan Jung;Dongwon Lee;Hua Wang - 通讯作者:
Hua Wang
Dongwon Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongwon Lee', 18)}}的其他基金
EAGER: SaTC-EDU: A Framework for Developing Attributable Cybersecurity Case Studies
EAGER:SaTC-EDU:开发可归因网络安全案例研究的框架
- 批准号:
2114824 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
- 批准号:
2029976 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
REU Site: Machine Learning in Cybersecurity
REU 网站:网络安全中的机器学习
- 批准号:
1950491 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Vertical Search Engine and Graph Homomorphism for Enhancing the Cybersecurity Workforce
用于增强网络安全劳动力的垂直搜索引擎和图同态
- 批准号:
1934782 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
- 批准号:
1940076 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Developing and Evaluating Fraud Informatics Curriculum among Institutions in the Appalachian Region
开发和评估阿巴拉契亚地区机构之间的欺诈信息学课程
- 批准号:
1820609 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Penn State's CyberCorps; Scholarship for Service Program
宾夕法尼亚州立大学的 CyberCorps;
- 批准号:
1663343 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
EAGER: Training Computers and Humans to Detect Misinformation by Combining Computational and Theoretical Analysis
EAGER:通过结合计算和理论分析来训练计算机和人类检测错误信息
- 批准号:
1742702 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: User-Centered Multiparty Access Control for Collective Content Management
职业:以用户为中心的多方访问控制,用于集体内容管理
- 批准号:
1453080 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
SBE TWC: Small: Collaborative: Privacy Protection in Social Networks: Bridging the Gap Between User Perception and Privacy Enforcement
SBE TWC:小型:协作:社交网络中的隐私保护:弥合用户感知和隐私执行之间的差距
- 批准号:
1422215 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318593 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318592 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321490 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321532 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Systems Support for Run-Anywhere Serverless
协作研究:CISE:大型:对 Run-Anywhere Serverless 的系统支持
- 批准号:
2321725 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
- 批准号:
2318696 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318711 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant