CAREER: Adaptive Large-Scale Program Analysis
职业:自适应大型程序分析
基本信息
- 批准号:1743116
- 负责人:
- 金额:$ 29.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-15 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Automated program analyses developed over the last three decades have demonstrated the ability to prove non-trivial properties of real-world programs. This ability, in turn, has applications to emerging software challenges in security, software-defined networking, cyber-physical systems, and beyond. The diversity of such applications necessitates adapting the underlying program analyses to client needs, in aspects of scalability, applicability, and accuracy. Today's program analyses, however, do not provide useful tuning knobs. The goal of this research is a general computer-assisted approach to effectively adapt program analyses to diverse clients. It bridges the gap between decades of program analysis research on one hand and diverse artifacts built atop them to address emerging software challenges on the other. In doing so, it broadens and enhances the benefits of program analysis to its users, as well as users of software whose quality is impacted by program analysis.The research has three key ingredients. First, it poses optimization problems that expose a large set of choices to adapt various aspects of a program analysis, such as its cost, the accuracy of its result, and the assumptions it makes about missing information. Second, it solves those optimization problems by new search algorithms that efficiently navigate large search spaces, reason in the presence of noise, interact with users, and learn across programs. Third, it builds a program analysis platform that facilitates users to specify and compose analyses, enables search algorithms to reason about analyses, and allows using large-scale computing resources to parallelize analyses. The approach is demonstrated in the context of analyzing mobile apps -- programs that run on advanced mobile devices such as smartphones and tablets. Mobile apps represent an increasing use of non-expert programmers and they are likely to be used across a wide range of users in heterogeneous and demanding conditions that can benefit from what-if analyses that program analysis can offer.
在过去三十年中开发的自动化程序分析已经证明了证明现实世界程序的非平凡属性的能力。这种能力反过来又应用于安全、软件定义网络、网络物理系统等新兴软件挑战。这类应用程序的多样性要求在可伸缩性、适用性和准确性方面调整底层程序分析以满足客户需求。然而,今天的程序分析并没有提供有用的调优旋钮。本研究的目标是一种通用的计算机辅助方法,以有效地适应不同客户的程序分析。一方面,它弥合了几十年的程序分析研究和建立在它们之上的各种工件之间的差距,以解决另一方面出现的软件挑战。在这样做的过程中,它扩大并增强了程序分析对其用户的好处,以及对那些质量受到程序分析影响的软件用户的好处。这项研究有三个关键因素。首先,它提出了优化问题,暴露了大量的选择,以适应程序分析的各个方面,例如成本、结果的准确性以及对缺失信息的假设。其次,它通过新的搜索算法解决了这些优化问题,这些算法可以有效地导航大型搜索空间,在存在噪声的情况下进行推理,与用户交互,并跨程序学习。第三,构建程序分析平台,方便用户指定和编写分析,使搜索算法能够对分析进行推理,并允许使用大规模计算资源并行化分析。该方法在分析移动应用程序(在智能手机和平板电脑等先进移动设备上运行的程序)的背景下得到了证明。移动应用程序代表了越来越多的非专业程序员的使用,它们可能被广泛的用户在异构和苛刻的条件下使用,这些用户可以从程序分析提供的假设分析中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mayur Naik其他文献
Yada: Straightforward parallel programming
- DOI:
10.1016/j.parco.2011.02.005 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
David Gay;Joel Galenson;Mayur Naik;Kathy Yelick - 通讯作者:
Kathy Yelick
Relational Query Synthesis ⋈ Decision Tree Learning
关系查询综合⋈决策树学习
- DOI:
10.14778/3626292.3626306 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aaditya Naik;Aalok Thakkar;Adam Stein;R. Alur;Mayur Naik - 通讯作者:
Mayur Naik
Mayur Naik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mayur Naik', 18)}}的其他基金
SHF: Medium: Scallop: A Neurosymbolic Programming Framework for Combining Logic with Deep Learning
SHF:Medium:Scallop:一种将逻辑与深度学习相结合的神经符号编程框架
- 批准号:
2313010 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Synthesis of Logic Programs for Democratizing Program Analysis
合作研究:SHF:媒介:民主化程序分析的逻辑程序综合
- 批准号:
2107429 - 财政年份:2021
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
FMitF: Collaborative Research: Synergies between Program Synthesis and Neural Learning of Graph Structures
FMITF:协作研究:程序综合与图结构神经学习之间的协同作用
- 批准号:
1836936 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
SHF: Small: New Frontiers in Constraint-Based Program Analysis
SHF:小型:基于约束的程序分析的新领域
- 批准号:
1737858 - 财政年份:2017
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
SHF: Small: New Frontiers in Constraint-Based Program Analysis
SHF:小型:基于约束的程序分析的新领域
- 批准号:
1526270 - 财政年份:2015
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
CAREER: Adaptive Large-Scale Program Analysis
职业:自适应大型程序分析
- 批准号:
1253867 - 财政年份:2013
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
相似海外基金
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 29.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
- 批准号:
2890822 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Studentship
Why so mixed up? Exploring the history and adaptive significance of pervasive large chromosomal inversions in sunflowers.
为何如此混杂?
- 批准号:
RGPIN-2021-02482 - 财政年份:2022
- 资助金额:
$ 29.78万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Study on adaptive structuring of large lightweight space antennas simultaneously considering radio wave characteristics
同时考虑电波特性的大型轻量化空间天线自适应结构研究
- 批准号:
22K04535 - 财政年份:2022
- 资助金额:
$ 29.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
- 批准号:
466020 - 财政年份:2022
- 资助金额:
$ 29.78万 - 项目类别:
Directed Grant
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
- 批准号:
465699 - 财政年份:2022
- 资助金额:
$ 29.78万 - 项目类别:
Directed Grant
Giant viruses in the open ocean: Is large size adaptive where cells are scarce?
公海中的巨型病毒:大尺寸是否能适应细胞稀缺的环境?
- 批准号:
2129697 - 财政年份:2022
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
- 批准号:
RGPIN-2022-05155 - 财政年份:2022
- 资助金额:
$ 29.78万 - 项目类别:
Discovery Grants Program - Individual