Data-Driven Model Development for Cost-Effective, Reliable Cardiac Tissue Manufacturing
数据驱动模型开发,实现经济高效、可靠的心脏组织制造
基本信息
- 批准号:1743445
- 负责人:
- 金额:$ 62.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
U.S. mortality rates from heart disease are increasing, driven particularly by deaths in younger adults. Limited availability of native human heart tissue impedes research, drug discovery, and clinical cardiac regeneration efforts. Treatment with stem cell-derived heart tissues, composed of functional contracting heart cells called cardiomyocytes, has high potential to achieve clinically meaningful outcomes. However, the number of cells required for therapeutic benefit has been estimated to be 1-10 billion per patient. Technical challenges and limited scalability of current processes for manufacturing engineered heart tissues hinder progress toward clinical use. The primary goal of this research project is to design reliable and cost-effective manufacturing processes for producing engineered heart tissues. The project employs a novel scalable, one-step heart tissue production platform, combines experimental and modeling studies, and leverages their integration to understand how different operating conditions impact the heart tissue manufacturing process. The research has the potential to transform the ability to manufacture engineered heart tissue for drug testing and heart regeneration applications. Workforce development aspects of the project include engagement of undergraduate and graduate students and practicing engineers through joint upper level curriculum development, teaming with ongoing efforts to support local industry, including establishing a biomanufacturing track for the new cross-disciplinary Advanced Manufacturing engineering specialization, and collaborating with Alabama State University's Life Sciences Department to train students in fundamentals important to biomanufacturing, tissue engineering and bioprinting. To support long-term workforce development, this interdisciplinary research is being incorporated into multiple K-12 outreach efforts. Undergraduate researchers and Alabama State University summer interns will be key members of the research team. Technical challenges and limited scalability of current processes for manufacturing engineered cardiac tissues, including the ubiquitous use of pre-differentiated cardiomyocytes (CMs), has hindered progress toward clinical use. Lack of CM maturation and variable outcomes in scalable stirred flask bioreactors are critical barriers in therapeutic CM production. Professor Lipke has recently established a novel platform to directly differentiate hydrogel-encapsulated human induced pluripotent stem cells (hiPSCs) into engineered cardiac tissues. The research employs a custom microfluidic system to rapidly encapsulate hiPSCs in highly uniform microspheroids with controllable size and shape. By modifying tissue axial ratio, differentiating CMs will experience anisotropic mechanical stimulation during spontaneous contraction; this has been typically impossible to achieve in scalable, suspension cultures and has the unique potential to drive CM maturation. To leverage this potentially transformative approach for single-stage cardiac tissue production, a robust manufacturing process is needed. Thus, the overarching goal of this project is to design reliable and cost-effective manufacturing processes for reproducible, cost-effective, and high-quality production of cardiac tissues. To achieve this goal, the project pursues 3 aims: (1) Investigate the characteristics of engineered cardiac tissues formed using a single-stage process of human induced pluripotent stem cell (hiPSC) hydrogel microspheroid encapsulation and direct differentiation in suspension culture, (2) Identify regions of optimal or near-optimal parameter ranges to manufacture engineered cardiac tissues reliably in suspension culture and spinner flask bioreactor systems using data-driven models, and (3) Test the ability of hydrogel microspheres to support single-stage engineered cardiac tissue manufacturing in a more readily scalable, spinner flask bioreactor system. Guided by data-driven models, the project investigates the effects of hydrogel microspheroid shape and size, polymer precursor concentration, crosslinking time and light intensity, and applied shear stress, on safety and efficacy attributes of single-stage manufactured cardiac tissues. Real-time functional monitoring and in-depth initial and end-point characterization are being performed to assess initial and resulting cell phenotypes. The approach integrates experimental studies and data-driven models through design of adaptive experimental campaigns for manufacturing cardiac tissue in a single-stage process directly from hydrogel encapsulated hiPSCs. Using inverse analysis on the data-driven models, the range of process parameters is being determined to minimize variability in electrophysiological and mechanical contraction attributes of engineered cardiac tissues, which is essential for their reliable manufacturing. Fundamentals of tissue engineering, polymer science, and microfluidics will be drawn upon to manufacture cardiac tissue microspheres directly from hiPSCs, rather than employing pre-differentiated cardiac cells. This approach is unique and, by eliminating multiple cell handling steps and employing a polyethyleneglycol-fibrinogen photocrosslinkable matrix, it has the potential to provide a transformative advance in the ability to manufacture engineered heart tissue for drug testing and cardiac regeneration applications.
美国心脏病死亡率正在上升,尤其是年轻人的死亡。天然人类心脏组织的可用性有限阻碍了研究、药物发现和临床心脏再生工作。使用干细胞衍生的心脏组织(由称为心肌细胞的功能性收缩心脏细胞组成)进行治疗,很有可能实现具有临床意义的结果。 然而,每位患者获得治疗效果所需的细胞数量估计为 1-100 亿个。目前工程心脏组织制造工艺的技术挑战和有限的可扩展性阻碍了临床应用的进展。该研究项目的主要目标是设计可靠且具有成本效益的制造工艺来生产工程心脏组织。该项目采用了一种新颖的可扩展、一步式心脏组织生产平台,结合了实验和建模研究,并利用它们的集成来了解不同的操作条件如何影响心脏组织制造过程。该研究有可能改变制造用于药物测试和心脏再生应用的工程心脏组织的能力。该项目的劳动力发展方面包括通过联合高层课程开发吸引本科生、研究生和执业工程师参与,持续努力支持当地工业,包括为新的跨学科先进制造工程专业建立生物制造轨道,并与阿拉巴马州立大学生命科学系合作,培训学生生物制造、组织工程和生物打印的重要基础知识。为了支持长期的劳动力发展,这项跨学科研究正在被纳入多项 K-12 外展工作中。本科研究人员和阿拉巴马州立大学暑期实习生将成为研究团队的主要成员。当前工程心脏组织制造工艺(包括预分化心肌细胞(CM)的普遍使用)的技术挑战和可扩展性有限,阻碍了临床应用的进展。可扩展的搅拌烧瓶生物反应器中缺乏 CM 成熟和可变结果是治疗性 CM 生产的关键障碍。 Lipke 教授最近建立了一个新平台,可将水凝胶封装的人类诱导多能干细胞 (hiPSC) 直接分化为工程心脏组织。该研究采用定制的微流体系统将 hiPSC 快速封装在尺寸和形状可控的高度均匀的微球体中。通过改变组织轴比,分化CM在自发收缩期间将经历各向异性机械刺激;这在可扩展的悬浮培养中通常是不可能实现的,并且具有推动 CM 成熟的独特潜力。为了利用这种潜在的变革性方法进行单阶段心脏组织生产,需要强大的制造工艺。因此,该项目的总体目标是设计可靠且具有成本效益的制造工艺,以实现可重复、具有成本效益和高质量的心脏组织生产。为了实现这一目标,该项目追求三个目标:(1)研究使用人类诱导多能干细胞(hiPSC)水凝胶微球封装和悬浮培养中直接分化的单阶段过程形成的工程心脏组织的特征,(2)识别最佳或接近最佳参数范围的区域,以在悬浮培养和转瓶生物反应器系统中可靠地制造工程心脏组织 使用数据驱动模型,以及(3)测试水凝胶微球在更容易扩展的旋转烧瓶生物反应器系统中支持单阶段工程心脏组织制造的能力。在数据驱动模型的指导下,该项目研究了水凝胶微球形状和尺寸、聚合物前体浓度、交联时间和光强度以及施加的剪切应力对单阶段制造的心脏组织的安全性和有效性属性的影响。正在进行实时功能监测以及深入的初始和终点表征,以评估初始和最终的细胞表型。该方法通过设计适应性实验活动,将实验研究和数据驱动模型结合起来,直接从水凝胶封装的 hiPSC 中单阶段制造心脏组织。通过对数据驱动模型的逆分析,确定工艺参数的范围,以最大限度地减少工程心脏组织的电生理和机械收缩属性的变异性,这对于其可靠制造至关重要。将利用组织工程、聚合物科学和微流体学的基础知识,直接从 hiPSC 制造心脏组织微球,而不是使用预分化的心脏细胞。这种方法是独特的,通过消除多个细胞处理步骤并采用聚乙二醇-纤维蛋白原光交联基质,它有可能在制造用于药物测试和心脏再生应用的工程心脏组织的能力方面提供革命性的进步。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Human Induced Pluripotent Stem Cell Encapsulation Geometry Impacts Three-Dimensional Developing Human Engineered Cardiac Tissue Functionality
人类诱导多能干细胞封装几何形状影响三维发育的人类工程心脏组织功能
- DOI:10.1089/ten.tea.2022.0107
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Ellis, Morgan E.;Harris, Bryana N.;Hashemi, Mohammadjafar;Harvell, B. Justin;Bush, Michaela Z.;Hicks, Emma E.;Finklea, Ferdous B.;Wang, Eric M.;Nataraj, Ravikiran;Young, Nathan P.
- 通讯作者:Young, Nathan P.
Novel Tool to Select Modeling Technique for Design Space Approximation
用于选择设计空间近似建模技术的新工具
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Williams, Bianca;Cremaschi, Selen
- 通讯作者:Cremaschi, Selen
Efficiency of Uncertainty Propagation Methods for Estimating Output Moments
用于估计输出矩的不确定性传播方法的效率
- DOI:10.1016/b978-0-12-818597-1.50078-3
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Mohammadi, Samira;Cremaschi, Selen
- 通讯作者:Cremaschi, Selen
Selection of surrogate modeling techniques for surface approximation and surrogate-based optimization
- DOI:10.1016/j.cherd.2021.03.028
- 发表时间:2021-04
- 期刊:
- 影响因子:3.9
- 作者:B. Williams;S. Cremaschi
- 通讯作者:B. Williams;S. Cremaschi
Classification of cardiac differentiation outcome, percentage of cardiomyocytes on day 10 of differentiation, for hydrogel‐encapsulated hiPSCs
水凝胶封装的 hiPSC 的心脏分化结果分类、分化第 10 天的心肌细胞百分比
- DOI:10.1002/amp2.10148
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mohammadi, Samira;Hashemi, Mohammadjafar;Finklea, Ferdous;Williams, Bianca;Lipke, Elizabeth;Cremaschi, Selen
- 通讯作者:Cremaschi, Selen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Lipke其他文献
P31-042-23 An Improved In Vitro 3T3-L1 Adipocyte Model of Inflammation and Insulin Resistance
- DOI:
10.1016/j.cdnut.2023.101607 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Ifeoluwa Odeniyi;Bulbul Ahmed;Benjamin Anbiah;Grace Hester;Iman Hassani;Elizabeth Lipke;Michael Greene - 通讯作者:
Michael Greene
P23-001-23 Role of CXCL7 in Colon Cancer Progression
- DOI:
10.1016/j.cdnut.2023.100114 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Hadeel Aldhowayan;Elizabeth Lipke;Michael Greene - 通讯作者:
Michael Greene
Elizabeth Lipke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Lipke', 18)}}的其他基金
PFI-TT: An Automated Platform for Production and Distribution of Engineered Tissue Microspheres
PFI-TT:工程组织微球生产和分销的自动化平台
- 批准号:
2141205 - 财政年份:2022
- 资助金额:
$ 62.19万 - 项目类别:
Standard Grant
I-Corps: Spheroidal engineered tissues for more efficient drug discovery
I-Corps:球形工程组织可提高药物发现效率
- 批准号:
2107931 - 财政年份:2021
- 资助金额:
$ 62.19万 - 项目类别:
Standard Grant
Collaborative Research: RECODE: Directing and Controlling Cardiac Differentiation Through Cellular and Microenvironmental Manipulation and Application of Machine-Learning
合作研究:RECODE:通过细胞和微环境操纵以及机器学习的应用来指导和控制心脏分化
- 批准号:
2135059 - 财政年份:2021
- 资助金额:
$ 62.19万 - 项目类别:
Standard Grant
IRES Track I: Process Development for Cell and Tissue Biomanufacturing
IRES Track I:细胞和组织生物制造工艺开发
- 批准号:
1952614 - 财政年份:2020
- 资助金额:
$ 62.19万 - 项目类别:
Standard Grant
CAREER:Injectable Biomimetic Scaffolds to Direct Stem Cell-Derived Cardiomyocyte Differentiation
职业:可注射仿生支架指导干细胞衍生的心肌细胞分化
- 批准号:
1150854 - 财政年份:2012
- 资助金额:
$ 62.19万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 62.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-driven model links BMIz to gene expression in pediatric asthma
数据驱动模型将 BMIz 与小儿哮喘基因表达联系起来
- 批准号:
493135 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
- 批准号:
10644300 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving data-driven design using physical model-based machine learning
使用基于物理模型的机器学习改进数据驱动设计
- 批准号:
23K13239 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of bioinformatic pipelines for multi omics data to model the effect of small molecule driven lipid metabolism on autophagy regulation
开发多组学数据的生物信息学管道,以模拟小分子驱动的脂质代谢对自噬调节的影响
- 批准号:
BB/Y512540/1 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Training Grant
ATD: A model-assisted data-driven framework for prediction of rare extreme events from sparse measurements
ATD:模型辅助数据驱动框架,用于通过稀疏测量预测罕见极端事件
- 批准号:
2220548 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Standard Grant














{{item.name}}会员




