EAGER: Finite-Absorption-Bandwidth Materials for Cost-Effective Multijunction Photovoltaics
EAGER:用于经济高效的多结光伏的有限吸收带宽材料
基本信息
- 批准号:1743941
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:Nontechnical: Commercial solar cells that absorb visible light are reaching their theoretical and practical efficiency limits. An ideal strategy for improving their performance would be a new material that could simply be "stuck on top" of a current high-performing commercial cell, allowing it to harvest the invisible infrared radiation emitted by the sun. This project seeks to build a new class of flexible materials that only absorb in the infrared while transmitting visible light by using semiconductor particles with optical properties that depend on their nano- and micro-scale structures. Specifically, the goal is to make photonic crystals (structures in which certain frequency ranges of light cannot propagate) in strongly absorbing colloidal quantum dot films, to be used in color-tuned and transparent solar cells. The project has the potential to address broad societal goals in the development of more efficient renewable energy technologies, as alternatives to polluting and unsustainable fossil fuels, by developing lightweight, inexpensive, and flexible solar energy harvesting materials. Additionally, these materials could be ideal platforms for transparent and building-integrated solar cells. The project seeks to address fundamental questions on the role of different length scales in nanostructured materials, and how the interplay between them determines optical and electronic materials properties. Research activities will be integrated with a comprehensive education and outreach plan designed to introduce elementary school students, undergraduates, and graduate students to the fields of nanotechnology and sustainable engineering. Technical: The objective of this study is to build new inorganic nanomaterials with finite absorption bandwidths that will be used to improve the efficiency of transparent and multi-junction solar cells. The project will take an innovative approach for making flexible nanoparticle films with spectrally-tailored absorption and transmission spectra based on novel realizations of photonic bandgaps in strongly absorbing colloidal-quantum-dot-based thin-film materials. Methods to be employed include computational simulations, chemical syntheses, solution-processed device fabrication, and electrical and optical device characterization. If successful, the research work will result in a new method for improving the efficiency of current solar cell technology by introducing a new class of active optoelectronic materials that absorb only in the infrared. These flexible photovoltaic materials could increase the efficiency of current commercial solar cell technology in a cost-effective way: the top infrared cells will transmit visible light to the bottom standard visible cells, achieving current-matching in a multi-junction structure without re-engineering current high-performing solar cell technology. This project also aims to answer open questions involving the interactions between nano-physical phenomena, how to achieve self-assembly and optical engineering on multiple length scales, and how artificial photonic band structures can be maintained in strongly absorbing media. The novel materials developed in this project have the potential to be used in a number of new technologies, including multi-junction solar cells, transparent photovoltaics, and other photonic and optoelectronic devices.
翻译后摘要:非技术:商业太阳能电池,吸收可见光达到其理论和实际效率的极限。提高其性能的理想策略是一种新材料,可以简单地“粘在”当前高性能商业电池的顶部,使其能够收集太阳发出的不可见的红外辐射。该项目旨在构建一类新的柔性材料,该材料仅吸收红外线,同时通过使用具有取决于其纳米和微米级结构的光学特性的半导体颗粒来传输可见光。具体来说,目标是在强吸收胶体量子点薄膜中制造光子晶体(某些频率范围的光不能传播的结构),用于颜色调谐和透明的太阳能电池。该项目有可能通过开发轻质、廉价和灵活的太阳能收集材料,在开发更有效的可再生能源技术方面实现广泛的社会目标,作为污染和不可持续的化石燃料的替代品。此外,这些材料可能是透明和建筑一体化太阳能电池的理想平台。该项目旨在解决纳米结构材料中不同长度尺度的作用以及它们之间的相互作用如何决定光学和电子材料特性的基本问题。研究活动将与旨在向小学生,本科生和研究生介绍纳米技术和可持续工程领域的综合教育和推广计划相结合。技术支持:本研究的目的是构建具有有限吸收带宽的新型无机纳米材料,用于提高透明和多结太阳能电池的效率。该项目将采用一种创新的方法,基于强吸收胶体量子点薄膜材料中光子带隙的新实现,制造具有光谱定制吸收和透射光谱的柔性纳米颗粒薄膜。所采用的方法包括计算模拟、化学合成、溶液处理器件制造以及电学和光学器件表征。如果成功的话,这项研究工作将通过引入一类只吸收红外线的新型有源光电材料来提高当前太阳能电池技术的效率。这些柔性光伏材料可以以具有成本效益的方式提高当前商业太阳能电池技术的效率:顶部红外电池将可见光传输到底部标准可见光电池,实现多结结构中的电流匹配,而无需重新设计当前高性能太阳能电池技术。该项目还旨在回答涉及纳米物理现象之间相互作用的开放性问题,如何在多个长度尺度上实现自组装和光学工程,以及如何在强吸收介质中保持人工光子带结构。该项目开发的新型材料有可能用于许多新技术,包括多结太阳能电池,透明光电子器件以及其他光子和光电器件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanna Thon其他文献
Susanna Thon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanna Thon', 18)}}的其他基金
CAREER: Finite-Absorption-Bandwidth Nanomaterials for Multijunction Photovoltaics and Narrow-Band Photodetectors
职业:用于多结光伏和窄带光电探测器的有限吸收带宽纳米材料
- 批准号:
1846239 - 财政年份:2019
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
High Mobility Hole Extraction Materials for Colloidal Quantum Dot Solar Cells
用于胶体量子点太阳能电池的高迁移率空穴提取材料
- 批准号:
1807342 - 财政年份:2018
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Live Programming for Finite Model Finders
职业:有限模型查找器的实时编程
- 批准号:
2337667 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Fourier analytic techniques in finite fields
有限域中的傅立叶分析技术
- 批准号:
EP/Y029550/1 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Research Grant
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Finite Models for the Kakeya Problems
Kakeya 问题的有限模型
- 批准号:
2246682 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Electronic properties of organic semiconductor crystals at finite temperature from first-principles
从第一原理研究有机半导体晶体在有限温度下的电子特性
- 批准号:
23K04667 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant