High Mobility Hole Extraction Materials for Colloidal Quantum Dot Solar Cells

用于胶体量子点太阳能电池的高迁移率空穴提取材料

基本信息

  • 批准号:
    1807342
  • 负责人:
  • 金额:
    $ 37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: Generating inexpensive electricity from sunlight could transform the way society meets its energy needs. Newer materials for solar cells, such as those based on liquid paints, are inexpensive and can be coated on a variety of surfaces; however, their power output is low compared to heavier conventional technology. The research team seeks to increase the power output of next-generation solar cells by developing new materials that more efficiently conduct electricity. The project has the potential to address broad societal goals in the development of more efficient renewable energy technologies, as alternatives to costly, polluting and unsustainable fossil fuels, by improving the power conversion efficiency of lightweight, cheap, and flexible solar materials. Research activities are integrated with a comprehensive education and outreach plan designed to introduce elementary students, undergraduates, and graduate students to the fields of nanotechnology and sustainable engineering. Research team members serve as mentors for the STEM Achievement in Baltimore Elementary Schools (SABES) program, regularly visiting elementary school classrooms in high-minority, low-income neighborhoods to engage students and teachers in hands-on engineering enrichment projects. Technical Description: The objective of this project is to build new high mobility hole extraction materials for PbS colloidal quantum dot (CQD) solar cells, addressing the efficiency-limiting factor in these devices. The materials routes being explored include new small organic molecule ligands, charge transfer dopants, PbSe-based CQD thin films, and stoichiometry-based doping control. We employ chemical synthesis, solution-processed device fabrication, and electrical and optical characterization. The three main goals of the project are to (1) solve the efficiency-limiting problem of low hole mobility in the hole extraction layer of PbS CQD solar cells using new doping strategies; (2) build proof-of-principle PbS CQD-based single- and multi-junction solar cells using the new hole extraction materials; and (3) answer fundamental questions about doping mechanisms and charge transport in nanoparticle-based thin film materials. This work aims to increase the efficiency of CQD solar cells so that they become competitive with conventional photovoltaic technology, representing a new flexible route for solar energy harvesting. The novel materials have the potential to be used in multijunction solar cells, transparent photovoltaics, flexible and wearable energy harvesting devices, and other photonic and optoelectronic technologies such as light emitting diodes and photosensors. The insights gained serve as foundations for understanding nanoscale charge transport in a wider range of structured materials systems. Research activities are integrated with an education plan that involves the development of new interdisciplinary undergraduate and graduate courses, focused on current research areas in renewable energy and nanomaterials, as well as STEM enrichment in public elementary schools in Baltimore City.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:利用太阳能发电可以改变社会满足能源需求的方式。太阳能电池的新材料,如基于液体涂料的材料,价格低廉,可以涂在各种各样的表面上;然而,与较重的传统技术相比,它们的功率输出很低。研究组的目标是通过开发更有效导电的新材料,提高下一代太阳能电池的输出功率。该项目有潜力通过提高轻质、廉价和灵活的太阳能材料的能量转换效率,在开发更高效的可再生能源技术方面解决广泛的社会目标,作为昂贵、污染和不可持续的化石燃料的替代品。研究活动与全面的教育和推广计划相结合,旨在向小学生、本科生和研究生介绍纳米技术和可持续工程领域。研究团队成员担任巴尔的摩小学STEM成就(SABES)项目的导师,定期访问高少数族裔、低收入社区的小学教室,让学生和教师参与动手工程丰富项目。技术描述:该项目的目标是为PbS胶体量子点(CQD)太阳能电池构建新的高迁移率空穴提取材料,解决这些设备的效率限制因素。正在探索的材料路线包括新的小有机分子配体、电荷转移掺杂剂、基于pbse的CQD薄膜和基于化学计量学的掺杂控制。我们采用化学合成,溶液处理器件制造,电学和光学表征。该项目的三个主要目标是:(1)利用新的掺杂策略解决PbS CQD太阳能电池空穴萃取层中低空穴迁移率的效率限制问题;(2)利用新的空穴提取材料构建基于PbS cqd的单结和多结太阳能电池;(3)回答纳米颗粒基薄膜材料中掺杂机制和电荷输运的基本问题。这项工作旨在提高CQD太阳能电池的效率,使其与传统光伏技术相竞争,代表了太阳能收集的一种新的灵活途径。这种新型材料有潜力用于多结太阳能电池、透明光伏电池、柔性和可穿戴能量收集设备,以及其他光子和光电技术,如发光二极管和光传感器。所获得的见解为理解更广泛的结构材料系统中的纳米级电荷输运奠定了基础。研究活动与教育计划相结合,该计划涉及开发新的跨学科本科和研究生课程,重点关注可再生能源和纳米材料的当前研究领域,以及巴尔的摩市公立小学的STEM丰富。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spray-Cast Electrodes in Colloidal Quantum Dot Solar Cells for Portable Solar Energy Manufacturing
用于便携式太阳能制造的胶体量子点太阳能电池中的喷铸电极
Sulfur-Infused Hole Transport Materials to Overcome Performance-Limiting Transport in Colloidal Quantum Dot Solar Cells
注入硫的空穴传输材料可克服胶体量子点太阳能电池中传输性能限制
  • DOI:
    10.1021/acsenergylett.0c01586
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Chiu, Arlene;Rong, Eric;Bambini, Christianna;Lin, Yida;Lu, Chengchangfeng;Thon, Susanna M.
  • 通讯作者:
    Thon, Susanna M.
Predicting Materials Parameters in Colloidal Quantum Dot Photovoltaic Devices Using Machine Learning Models Trained On Experimental Data
使用根据实验数据训练的机器学习模型预测胶体量子点光伏器件中的材料参数
Local Defects in Colloidal Quantum Dot Thin Films Measured via Spatially Resolved Multi‐Modal Optoelectronic Spectroscopy
  • DOI:
    10.1002/adma.201906602
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Yida Lin;Tina Gao;Xiaoyun Pan;M. Kamenetska;S. Thon
  • 通讯作者:
    Yida Lin;Tina Gao;Xiaoyun Pan;M. Kamenetska;S. Thon
New Chalcogenide-Based Hole Transport Materials for Colloidal Quantum Dot Photovoltaics
用于胶体量子点光伏的新型硫族化物空穴传输材料
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susanna Thon其他文献

Susanna Thon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susanna Thon', 18)}}的其他基金

CAREER: Finite-Absorption-Bandwidth Nanomaterials for Multijunction Photovoltaics and Narrow-Band Photodetectors
职业:用于多结光伏和窄带光电探测器的有限吸收带宽纳米材料
  • 批准号:
    1846239
  • 财政年份:
    2019
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
EAGER: Finite-Absorption-Bandwidth Materials for Cost-Effective Multijunction Photovoltaics
EAGER:用于经济高效的多结光伏的有限吸收带宽材料
  • 批准号:
    1743941
  • 财政年份:
    2017
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant

相似国自然基金

响应磁场解锁纤维蛋白“knob-hole杵臼结构”的新型载药纳米粒子用于溶栓治疗的研究
  • 批准号:
    32000948
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于Bump-Hole化学遗传学技术的βIII微管蛋白的功能研究
  • 批准号:
    21907005
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
HOLE基因在肺癌发生中的作用
  • 批准号:
    2018JJ2666
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
卤键、π-hole键功能化固相萃取吸附剂的设计、合成及其在生物体内多环芳烃DNA加合物检测中的应用
  • 批准号:
    81502851
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cosmic powerhouses: The birth, death, and legacy of black hole jets
宇宙动力源:黑洞喷流的诞生、死亡和遗产
  • 批准号:
    DP240102970
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Discovery Projects
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
Woods Hole Center for Oceans and Human Health
伍兹霍尔海洋与人类健康中心
  • 批准号:
    2418297
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2412341
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Equipment: Woods Hole Oceanographic Institution 2023 OI Proposal
设备:伍兹霍尔海洋研究所 2023 年 OI 提案
  • 批准号:
    2313654
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
The Seventeenth (17th) Graduate Climate Conference (GCC); Woods Hole, Massachusetts; November 2-4, 2023
第十七届(17th)气候研究生会议(GCC);
  • 批准号:
    2327558
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: Reverberation Mapping with Multi-Object Spectroscopy - from Sloan Digital Sky Survey Reverberation Mapping to the Black Hole Mapper
合作研究:使用多目标光谱进行混响映射 - 从斯隆数字巡天混响映射到黑洞映射器
  • 批准号:
    2310211
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
CAREER: Direct Tests of Black Hole Accretion Rate Prescriptions
职业:黑洞吸积率处方的直接测试
  • 批准号:
    2239807
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了