CAREER: Finite-Absorption-Bandwidth Nanomaterials for Multijunction Photovoltaics and Narrow-Band Photodetectors

职业:用于多结光伏和窄带光电探测器的有限吸收带宽纳米材料

基本信息

  • 批准号:
    1846239
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

CAREER: Finite-Absorption-Bandwidth Nanomaterials forMultijunction Photovoltaics and Narrow-Band PhotodetectorsECCS #1846239; PI: Susanna ThonNontechnical:The color of materials used in devices such as light sensors and solar cells is important because color determines how these devices respond to incident light. There is a lack of natural materials that only absorb invisible infrared light. This problem limits the efficiency of next-generation solar cells and infrared light sensors. This project addresses this problem by artificially structuring light-absorbing materials on the nanometer scale to control their color. These new materials will be used to make high-efficiency solar cells and color-selective light sensors. The insights and new technologies developed through this project could have wide-ranging applications. Areas that could be impacted include sustainable energy harvesting, hazardous gas sensing, night vision systems, and biomedical imaging. The research activities will be integrated with interdisciplinary educational and outreach activities. These include curriculum development for undergraduate and graduate level classes on nanotechnology and renewable energy. Research team members will also serve as STEM mentors for elementary school students in Baltimore City public schools.Technical:The objectives of the proposed research are to design and build new color-tuned nanomaterials with finite-absorption-bandwidths (FABs) based on photonic band engineering in strongly absorbing materials and use them to make cost-effective multijunction solar cells and narrow-band photodetectors. The proposed research aims to solve the problem of a lack of infrared (IR) optical materials with spectral absorption and transmission profiles that can be independently controlled through the development of new FAB materials composed of colloidal quantum dot thin films for IR responsivity and photonic structuring for visible transparency via control of the in-plane photonic band structure. Methods to be employed include electromagnetic simulations, chemical synthesis, solution-processed device fabrication, and optoelectronic device characterization. The main goals of the project are to (1) establish a quantitative theory for how photonic band structure depends on material absorption using electromagnetic simulations and coupled oscillator theory, (2) build FAB materials using photonic band engineering and self-assembled fabrication techniques, and (3) use the FAB materials to build multijunction solar cells and narrow-band IR photodetectors. If successful, the proposed work will result in a new method for improving the efficiency of current solar cell and photodetector technology by introducing a new class of optoelectronically-active materials that absorb only in the infrared. The project seeks to advance the understanding of fundamental energy transfer processes in nanostructured materials on multiple length scales and use emergent bulk effects to build new optoelectronic devices. These new insights and devices have the potential to enable research in other fields where photoactive materials with controllable spectral profiles could be used for lighting, sensing, and imaging applications, e.g. In addition to the experimental work, the goal of providing a theoretical and computational underpinning for understanding materials behavior on multiple length scales should broaden materials and device research in general by adding to the toolbox of materials and effects that can be exploited for novel applications. The integrated educational and outreach components of the project are designed to engage elementary, undergraduate, and graduate students in the fields of nanotechnology and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
职业:用于多结光致发光器件和窄带光电探测器的吸收带宽纳米材料ECCS #1846239; PI:Susanna Thon非技术:用于光传感器和太阳能电池等设备的材料的颜色很重要,因为颜色决定了这些设备对入射光的响应。缺乏只吸收不可见红外光的天然材料。这个问题限制了下一代太阳能电池和红外光传感器的效率。该项目通过在纳米尺度上人工构造光吸收材料来控制它们的颜色来解决这个问题。这些新材料将用于制造高效太阳能电池和颜色选择性光传感器。通过该项目开发的见解和新技术可以有广泛的应用。可能受到影响的领域包括可持续能源收集、危险气体传感、夜视系统和生物医学成像。研究活动将与跨学科教育和外联活动相结合。其中包括纳米技术和可再生能源的本科生和研究生课程开发。研究团队成员还将担任巴尔的摩市公立学校小学生的STEM导师。技术:拟议研究的目标是设计和构建基于强吸收材料光子带工程的具有有限吸收带宽(FAB)的新型颜色调谐纳米材料,并使用它们制造具有成本效益的多结太阳能电池和窄带光电探测器。拟议的研究旨在解决缺乏红外(IR)光学材料的问题,这些材料具有光谱吸收和透射分布,可以通过开发由胶体量子点薄膜组成的新FAB材料来独立控制,用于IR响应性和通过控制面内光子带结构来实现可见光透明性的光子结构。 采用的方法包括电磁模拟、化学合成、溶液处理器件制造和光电器件表征。该项目的主要目标是(1)使用电磁模拟和耦合振荡器理论建立光子带结构如何依赖于材料吸收的定量理论,(2)使用光子带工程和自组装制造技术构建FAB材料,以及(3)使用FAB材料构建多结太阳能电池和窄带IR光电探测器。如果成功的话,这项工作将通过引入一类只吸收红外线的新型光电活性材料来提高当前太阳能电池和光电探测器技术的效率。该项目旨在促进对纳米结构材料在多个长度尺度上的基本能量传递过程的理解,并利用涌现的体效应来构建新的光电器件。这些新的见解和设备有可能使其他领域的研究成为可能,在这些领域中,具有可控光谱轮廓的光活性材料可以用于照明、传感和成像应用,例如,除了实验工作之外,为理解材料在多个长度尺度上的行为提供理论和计算基础的目标,应该通过增加材料和效果的工具箱,可用于新的应用。该项目的综合教育和推广部分旨在吸引小学,本科和研究生在纳米技术和工程领域。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectrally-selective Photovoltaics via Photonic Band Engineering in Absorbing Media
通过吸收介质中的光子能带工程实现光谱选择性光伏发电
Inverse Design of PbS Colloidal Quantum Dot Spectrally-Selective Photovoltaic Films
PbS胶体量子点光谱选择性光伏薄膜的逆向设计
Controlling spectral selectivity in optoelectronics via photonic band engineering in absorbing media
通过吸收介质中的光子带工程控制光电子学中的光谱选择性
Spray-Cast Electrodes in Colloidal Quantum Dot Solar Cells for Portable Solar Energy Manufacturing
用于便携式太阳能制造的胶体量子点太阳能电池中的喷铸电极
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susanna Thon其他文献

Susanna Thon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susanna Thon', 18)}}的其他基金

High Mobility Hole Extraction Materials for Colloidal Quantum Dot Solar Cells
用于胶体量子点太阳能电池的高迁移率空穴提取材料
  • 批准号:
    1807342
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Finite-Absorption-Bandwidth Materials for Cost-Effective Multijunction Photovoltaics
EAGER:用于经济高效的多结光伏的有限吸收带宽材料
  • 批准号:
    1743941
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
  • 批准号:
    23K25768
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Live Programming for Finite Model Finders
职业:有限模型查找器的实时编程
  • 批准号:
    2337667
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Fourier analytic techniques in finite fields
有限域中的傅立叶分析技术
  • 批准号:
    EP/Y029550/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
  • 批准号:
    EP/Y004671/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
  • 批准号:
    EP/X042650/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Electronic properties of organic semiconductor crystals at finite temperature from first-principles
从第一原理研究有机半导体晶体在有限温度下的电子特性
  • 批准号:
    23K04667
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
  • 批准号:
    2883532
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了