Negative Curvature in Fiber Bundles and Counting Problems

纤维束的负曲率和计数问题

基本信息

  • 批准号:
    1744551
  • 负责人:
  • 金额:
    $ 12.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Among the many techniques available for exploring complicated geometric systems, often two of the most fruitful are (1) decomposing related structures into their basic building blocks and (2) sampling from those systems to determine their typical behavior. For example, to understand a high dimensional geometric object, one can study the various ways that object fibers (i.e., can be build out of simpler, lower dimensional pieces which are arranged in a predictable way). Even if a complete understanding of the object may be out of reach, one can attempt to comprehend its properties "on average." In this project, the PI seeks to apply similar principles to the study of geometrically significant groups via their action on naturally associated spaces. This pursuit brings to bear methods from geometry, topology, dynamics, and group theory, and seeks to not only understand these objects in an abstract sense, but to produce tractable models which allow for quantitative understanding.In more detail, the PI will carry out projects that investigate the geometry and topology of hyperbolic bundles as well as study geometrically motivated counting problems in finitely generated groups. In the classical setting of a hyperbolic 3-manifold fibering over the circle, this project builds on a program to study the extent to which the veering triangulation (a certain combinatorial construction) effectively encodes the manifold's geometry and topology. Inspired by the elegant nature of these triangulations, the PI will construct a canonical ideal simplicial complex in the setting of free-by-cyclic groups; a setting where a single topological object controlling the group's algebraic decompositions is currently lacking. Finally, the PI will study the "typical" geometry of fibered manifolds, free-by-cyclic groups, and representations of hyperbolic groups. A common thread throughout these investigations will be to demonstrate the extent to which negative curvature features are persistent and, in the appropriate sense, generic.
在探索复杂几何系统的许多技术中,通常最有成效的两种是(1)将相关结构分解为它们的基本构建块和(2)从这些系统中采样以确定它们的典型行为。例如,为了理解高维几何对象,可以研究对象纤维(即,可以由以可预测的方式布置的更简单、更低维度的部件构建)。即使对物体的完全理解可能遥不可及,人们也可以试图理解它的“平均”属性。“在这个项目中,PI试图通过它们对自然关联空间的作用,将类似的原则应用于几何重要群体的研究。这个追求带来承担的方法从几何学,拓扑学,动力学,和群论,并寻求不仅在抽象意义上理解这些对象,但产生易于处理的模型,允许定量的理解。更详细地说,PI将开展项目,调查的几何和拓扑双曲丛,以及研究几何动机计数问题在双曲生成群。在经典的设置双曲3-流形在圆上,这个项目建立在一个程序来研究转向三角剖分(某种组合构造)有效地编码流形的几何和拓扑的程度。受这些三角剖分的优雅性质的启发,PI将在自由循环群的设置中构建一个规范的理想单纯复形;一个当前缺乏控制群代数分解的单个拓扑对象的设置。最后,PI将研究纤维流形的“典型”几何,自由循环群和双曲群的表示。贯穿这些研究的一个共同主线将是证明负曲率特征在多大程度上是持久的,并且在适当的意义上是通用的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rank and Nielsen equivalence in hyperbolic extensions
双曲扩展中的Rank和Nielsen等价
Random veering triangulations are not geometric
随机转向三角测量不是几何的
  • DOI:
    10.4171/ggd/575
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Futer, David;Taylor, Samuel;Worden, William
  • 通讯作者:
    Worden, William
Largest projections for random walks and shortest curves in random mapping tori
随机游走的最大投影和随机映射圆环中的最短曲线
  • DOI:
    10.4310/mrl.2019.v26.n1.a14
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Sisto, Alessandro;Taylor, Samuel J.
  • 通讯作者:
    Taylor, Samuel J.
Pulling back stability with applications to Out(Fn) and relatively hyperbolic groups: PULLING BACK STABILITY
通过应用 Out(Fn) 和相对双曲群来拉回稳定性:拉回稳定性
Weil–Petersson translation length and manifolds with many fibered fillings
WeiläPetersson 平移长度和带有许多纤维填充物的流形
  • DOI:
    10.1016/j.aim.2020.107457
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Leininger, Christopher;Minsky, Yair N.;Souto, Juan;Taylor, Samuel J.
  • 通讯作者:
    Taylor, Samuel J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Taylor其他文献

Reconstructing Historical Vegetation Cover in Otago, New Zealand, Using Multi-proxy Analysis of Peat Cores.
使用泥炭核心的多代理分析重建新西兰奥塔哥的历史植被覆盖。
  • DOI:
    10.26021/7810
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Taylor
  • 通讯作者:
    Samuel Taylor
31. Reduced Directed Exploration in Amphetamine Use Disorders Independent of Anxiety Induction
  • DOI:
    10.1016/j.biopsych.2024.02.266
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Toru Takahashi;Carter Goldman;Claire Lavalley;Ning Li;Anne E. Chuning;Samuel Taylor;Rowan Hodson;Ryan Smith
  • 通讯作者:
    Ryan Smith
2015 – PHARMACOLOGICALLY-INDUCED TRANSCRIPTION FACTOR RE-PU-SITIONING IN ACUTE MYELOID LEUKEMIA
  • DOI:
    10.1016/j.exphem.2021.12.380
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samuel Taylor;Boris Bartholdy;Oliver Bohorquez;David Boykin;Gregory Poon;Jacob Stauber;Ulrich Steidl;David Wilson
  • 通讯作者:
    David Wilson
Bioethics in the Making: “Ideal Patients” and the Beginnings of Face Transplant Surgery in Mexico
正在形成的生物伦理学:“理想患者”和墨西哥面部移植手术的开端
  • DOI:
    10.1080/09505431.2013.789843
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Samuel Taylor
  • 通讯作者:
    Samuel Taylor
Predictive Path Planning Algorithm Using Kalman Filters and MTL Robustness
使用卡尔曼滤波器和 MTL 鲁棒性的预测路径规划算法

Samuel Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Taylor', 18)}}的其他基金

Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
  • 批准号:
    2102018
  • 财政年份:
    2021
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Continuing Grant
Young Geometric Group Theory VIII
年轻几何群论VIII
  • 批准号:
    1853550
  • 财政年份:
    2019
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Standard Grant
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
  • 批准号:
    1708279
  • 财政年份:
    2017
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1400498
  • 财政年份:
    2014
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Fellowship Award
Global Warming Exhibition and Interpretive Programs
全球变暖展览和解说节目
  • 批准号:
    9150138
  • 财政年份:
    1991
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
  • 批准号:
    BB/Y00566X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Standard Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/2
  • 财政年份:
    2023
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Research Grant
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
  • 批准号:
    2304698
  • 财政年份:
    2023
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 12.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了