Young Geometric Group Theory VIII

年轻几何群论VIII

基本信息

  • 批准号:
    1853550
  • 负责人:
  • 金额:
    $ 2.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

This project is aimed at supporting U.S.-based participants at the meeting "Young Geometric Group Theory VIII" to be held at the University of the Basque Country in Bilbao, Spain, from June 30th to July 5th, 2019. Geometric group theory is an active branch of mathematics that focuses on the interactions between the geometry and topology of mathematical spaces and the algebraic objects which capture their symmetries. As most of the participants will be graduate students and early-career mathematicians, the conference will help them learn about new developments in the field, communicate their research results, and spark new research collaborations. The conference will also promote the growing diversity that geometric group theory has enjoyed through the selection of its speakers and participants.This conference is the eighth meeting of the "Young Geometric Group Theory" series, which has been held each year since 2012. The meeting features four types of events that are designed to bring graduate students and postdocs together with early-career and well-established researchers in order to foster an environment of learning and collaboration. The events include mini courses given by four established experts in the field, plenary talks given by junior researchers, informal discussion sessions, and poster sessions and lightning talks given by graduate students. The mini courses allow graduate students and postdocs to learn cutting-edge methods in geometric group theory both from their peers and from experts. Topics range from expanders to geometric structures and representations of discrete groups. The junior talks are a way to publicize the work of young researchers and to obtain feedback and foster new collaborations. A website for the conference can be found at https://sites.google.com/site/yggt2019bilbao.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在支持美国-基于与会者在会议“年轻几何群理论八”将在巴斯克地区毕尔巴鄂大学举行,西班牙,从2019年6月30日至7月5日。几何群论是数学的一个活跃的分支,它主要研究数学空间的几何和拓扑以及捕捉它们的对称性的代数对象之间的相互作用。由于大多数参与者将是研究生和早期职业数学家,会议将帮助他们了解该领域的新发展,交流他们的研究成果,并引发新的研究合作。本次会议也将通过选择演讲者和参与者来促进几何群论日益增长的多样性。本次会议是自2012年以来每年举办的“青年几何群论”系列会议的第八次会议。会议设有四种类型的活动,旨在将研究生和博士后与早期职业和成熟的研究人员聚集在一起,以营造学习和协作的环境。这些活动包括该领域四位知名专家的小型课程,初级研究人员的全体会议,非正式讨论会,以及研究生的海报会议和闪电演讲。迷你课程允许研究生和博士后从同行和专家那里学习几何群论的前沿方法。主题范围从扩张器到几何结构和离散群的表示。青年讲座是宣传青年研究人员工作、获得反馈和促进新合作的一种方式。 会议的网站可以在www.example.com上找到https://sites.google.com/site/yggt2019bilbao.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Taylor其他文献

31. Reduced Directed Exploration in Amphetamine Use Disorders Independent of Anxiety Induction
  • DOI:
    10.1016/j.biopsych.2024.02.266
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Toru Takahashi;Carter Goldman;Claire Lavalley;Ning Li;Anne E. Chuning;Samuel Taylor;Rowan Hodson;Ryan Smith
  • 通讯作者:
    Ryan Smith
2015 – PHARMACOLOGICALLY-INDUCED TRANSCRIPTION FACTOR RE-PU-SITIONING IN ACUTE MYELOID LEUKEMIA
  • DOI:
    10.1016/j.exphem.2021.12.380
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samuel Taylor;Boris Bartholdy;Oliver Bohorquez;David Boykin;Gregory Poon;Jacob Stauber;Ulrich Steidl;David Wilson
  • 通讯作者:
    David Wilson
Reconstructing Historical Vegetation Cover in Otago, New Zealand, Using Multi-proxy Analysis of Peat Cores.
使用泥炭核心的多代理分析重建新西兰奥塔哥的历史植被覆盖。
  • DOI:
    10.26021/7810
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Taylor
  • 通讯作者:
    Samuel Taylor
Bioethics in the Making: “Ideal Patients” and the Beginnings of Face Transplant Surgery in Mexico
正在形成的生物伦理学:“理想患者”和墨西哥面部移植手术的开端
  • DOI:
    10.1080/09505431.2013.789843
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Samuel Taylor
  • 通讯作者:
    Samuel Taylor
Predictive Path Planning Algorithm Using Kalman Filters and MTL Robustness
使用卡尔曼滤波器和 MTL 鲁棒性的预测路径规划算法

Samuel Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Taylor', 18)}}的其他基金

Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
  • 批准号:
    2102018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Continuing Grant
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
  • 批准号:
    1708279
  • 财政年份:
    2017
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
  • 批准号:
    1744551
  • 财政年份:
    2017
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1400498
  • 财政年份:
    2014
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Fellowship Award
Global Warming Exhibition and Interpretive Programs
全球变暖展览和解说节目
  • 批准号:
    9150138
  • 财政年份:
    1991
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
  • 批准号:
    2404322
  • 财政年份:
    2024
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
  • 批准号:
    2342119
  • 财政年份:
    2024
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
  • 批准号:
    2240567
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Conference: Riverside Geometric Group Theory Workshop 2023
会议:Riverside几何群理论研讨会2023
  • 批准号:
    2234299
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
  • 批准号:
    2311110
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Conference: Geometric Group Theory XI
会议:几何群论XI
  • 批准号:
    2242426
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Geometric group theory
几何群论
  • 批准号:
    2746871
  • 财政年份:
    2022
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Studentship
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
  • 批准号:
    2154637
  • 财政年份:
    2022
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
  • 批准号:
    2203355
  • 财政年份:
    2022
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了