Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
基本信息
- 批准号:1708279
- 负责人:
- 金额:$ 12.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Among the many techniques available for exploring complicated geometric systems, often two of the most fruitful are (1) decomposing related structures into their basic building blocks and (2) sampling from those systems to determine their typical behavior. For example, to understand a high dimensional geometric object, one can study the various ways that object fibers (i.e., can be build out of simpler, lower dimensional pieces which are arranged in a predictable way). Even if a complete understanding of the object may be out of reach, one can attempt to comprehend its properties "on average." In this project, the PI seeks to apply similar principles to the study of geometrically significant groups via their action on naturally associated spaces. This pursuit brings to bear methods from geometry, topology, dynamics, and group theory, and seeks to not only understand these objects in an abstract sense, but to produce tractable models which allow for quantitative understanding.In more detail, the PI will carry out projects that investigate the geometry and topology of hyperbolic bundles as well as study geometrically motivated counting problems in finitely generated groups. In the classical setting of a hyperbolic 3-manifold fibering over the circle, this project builds on a program to study the extent to which the veering triangulation (a certain combinatorial construction) effectively encodes the manifold's geometry and topology. Inspired by the elegant nature of these triangulations, the PI will construct a canonical ideal simplicial complex in the setting of free-by-cyclic groups; a setting where a single topological object controlling the group's algebraic decompositions is currently lacking. Finally, the PI will study the "typical" geometry of fibered manifolds, free-by-cyclic groups, and representations of hyperbolic groups. A common thread throughout these investigations will be to demonstrate the extent to which negative curvature features are persistent and, in the appropriate sense, generic.
在许多可用于探索复杂几何系统的技术中,通常最有成效的两种技术是:(1)将相关结构分解为其基本构建块;(2)从这些系统中采样以确定其典型行为。例如,为了理解高维几何物体,可以研究物体纤维的各种方式(即,可以用更简单的、以可预测的方式排列的低维碎片构建)。即使完全理解一个对象可能是遥不可及的,一个人可以尝试理解它的性质“平均”。在这个项目中,PI试图通过对自然相关空间的作用,将类似的原理应用于几何上重要群体的研究。这种追求带来了几何学、拓扑学、动力学和群论的方法,并寻求不仅在抽象意义上理解这些对象,而且产生可处理的模型,允许定量理解。更详细地说,PI将开展研究双曲束的几何和拓扑的项目,以及研究有限生成群中的几何驱动计数问题。在圆上的双曲3流形光纤的经典设置中,本项目建立在一个程序的基础上,研究转向三角测量(某种组合结构)有效编码流形几何和拓扑的程度。受到这些三角形的优雅性质的启发,PI将在自由环群的设置中构建一个规范的理想简单复合体;目前还缺乏单个拓扑对象控制群的代数分解的设置。最后,PI将研究纤维流形的“典型”几何,自由环群和双曲群的表示。贯穿这些研究的一个共同主线将是证明负曲率特征在多大程度上是持久的,并且在适当的意义上是通用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Taylor其他文献
Reconstructing Historical Vegetation Cover in Otago, New Zealand, Using Multi-proxy Analysis of Peat Cores.
使用泥炭核心的多代理分析重建新西兰奥塔哥的历史植被覆盖。
- DOI:
10.26021/7810 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Samuel Taylor - 通讯作者:
Samuel Taylor
31. Reduced Directed Exploration in Amphetamine Use Disorders Independent of Anxiety Induction
- DOI:
10.1016/j.biopsych.2024.02.266 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:
- 作者:
Toru Takahashi;Carter Goldman;Claire Lavalley;Ning Li;Anne E. Chuning;Samuel Taylor;Rowan Hodson;Ryan Smith - 通讯作者:
Ryan Smith
2015 – PHARMACOLOGICALLY-INDUCED TRANSCRIPTION FACTOR RE-PU-SITIONING IN ACUTE MYELOID LEUKEMIA
- DOI:
10.1016/j.exphem.2021.12.380 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Samuel Taylor;Boris Bartholdy;Oliver Bohorquez;David Boykin;Gregory Poon;Jacob Stauber;Ulrich Steidl;David Wilson - 通讯作者:
David Wilson
Bioethics in the Making: “Ideal Patients” and the Beginnings of Face Transplant Surgery in Mexico
正在形成的生物伦理学:“理想患者”和墨西哥面部移植手术的开端
- DOI:
10.1080/09505431.2013.789843 - 发表时间:
2014 - 期刊:
- 影响因子:2.6
- 作者:
Samuel Taylor - 通讯作者:
Samuel Taylor
Predictive Path Planning Algorithm Using Kalman Filters and MTL Robustness
使用卡尔曼滤波器和 MTL 鲁棒性的预测路径规划算法
- DOI:
10.1109/ssrr.2018.8468646 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Sarra M. Alqahtani;Samuel Taylor;Ian Riley;R. Gamble;R. Mailler - 通讯作者:
R. Mailler
Samuel Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Taylor', 18)}}的其他基金
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
- 批准号:
1744551 - 财政年份:2017
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Global Warming Exhibition and Interpretive Programs
全球变暖展览和解说节目
- 批准号:
9150138 - 财政年份:1991
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/2 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant