EAGER: Optimization with Data Acquisition in Transportation Engineering

EAGER:交通工程中的数据采集优化

基本信息

  • 批准号:
    1745198
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) project will seek to acquire fundamental knowledge in determining the amount of data that should be purchased for statistically estimating the coefficients of optimization models. This will be done by examining the tradeoffs between the cost of data used for calibrating optimization models and the quality of solutions obtained with those models. Such tradeoffs will be explored mainly for problems relevant in transportation, such as vehicle assignment to tasks, vehicle routing, fleet sizing, and network flow models. The results should help transportation agencies and companies across the world in allocating resources and improving their professional practice. Beyond transportation problems, this work may yield methods that would be valuable in other applications, industries and disciplines, including engineering, operations research, economics and management.Traditional optimization approaches do not account for the cost of acquiring input data, which can be very important in many applications of engineering and operations research, including transportation. The need for considering the cost of data acquisition is even greater now and in the future when the ownership of the data for transportation is moving from publically owned to privately owned. The goals are to develop methods for optimizing the amounts of data acquired for calibrating some specific transportation optimization models and then explore whether and how such methods and guidelines may be generalized to other optimization problems in other fields. The quality and cost of data may determine how much should be obtained. In addition to extensive experiments involving real-world data, the project will examine the structures of datasets and their underlying distributions, to explore how a generic decision making framework may be developed for determining "how much data we should purchase in order to calibrate an optimization model"?
这个早期概念的探索性研究资助(EAGER)项目将寻求获得基础知识,以确定应该购买的数据量,用于统计估计优化模型的系数。这将通过检查用于校准优化模型的数据成本与使用这些模型获得的解决方案的质量之间的权衡来完成。这种权衡将主要探讨与运输有关的问题,如车辆分配任务,车辆路线,车队规模和网络流模型。研究结果将有助于世界各地的运输机构和公司分配资源并改善其专业实践。除了运输问题,这项工作可能会产生的方法,将是有价值的其他应用,行业和学科,包括工程,运筹学,经济学和management.Traditional优化方法不考虑成本获取输入数据,这可能是非常重要的工程和运筹学的许多应用,包括运输。考虑数据获取成本的必要性在现在和将来甚至更大,因为用于运输的数据的所有权正在从私人拥有转向私人拥有。我们的目标是开发方法来优化校准一些特定的运输优化模型所获得的数据量,然后探索这些方法和准则是否以及如何推广到其他领域的其他优化问题。数据的质量和成本可能决定应该获得多少数据。除了涉及真实世界数据的广泛实验外,该项目还将研究数据集的结构及其基本分布,以探索如何开发通用决策框架,以确定“我们应该购买多少数据来校准优化模型”?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Schonfeld其他文献

Adaptive inference for dynamic passenger route usage patterns in a metro network considering time-varying and heavy-tailed travel times
考虑时变和重尾旅行时间的地铁网络中动态乘客路线使用模式的自适应推理
GIS-based multi-criteria railway design with spatial environmental considerations
基于GIS的考虑空间环境的多标准铁路设计
  • DOI:
    10.1016/j.apgeog.2021.102449
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Taoran Song;Hao Pu;Paul Schonfeld;Hong Zhang;Wei Li;Xianbao Peng;Jianping Hu;Wei Liu
  • 通讯作者:
    Wei Liu
An event tree-based distance transform algorithm for simultaneously determining mountain railway alignments and station locations
一种基于事件树的距离变换算法,用于同时确定山区铁路路线和车站位置
  • DOI:
    10.1016/j.eswa.2024.125575
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Xinjie Wan;Hao Pu;Taoran Song;Paul Schonfeld;Yang Ran;Wei Li;Jianping Hu
  • 通讯作者:
    Jianping Hu
Exploring Collaboration as a Bridge to K-8 CS Integration
探索协作作为 K-8 CS 集成的桥梁
Assessing the economic and environmental sustainability of urban integrated railway-highway bridges
评估城市综合铁路-公路桥梁的经济和环境可持续性

Paul Schonfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Schonfeld', 18)}}的其他基金

Evasive Flow Capturing Problem: Optimal Allocation of Weigh-in-Motion Stations, Tollbooths, and Security Checkpoints
规避流量捕获问题:动态称重站、收费站和安全检查站的优化分配
  • 批准号:
    1335416
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
RAIDO: Reliable AI and Data Optimization
RAIDO:可靠的人工智能和数据优化
  • 批准号:
    10099264
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
RAIDO: Reliable AI and Data Optimization
RAIDO:可靠的人工智能和数据优化
  • 批准号:
    10093336
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
  • 批准号:
    10735863
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
  • 批准号:
    490488
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Operating Grants
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234031
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
  • 批准号:
    2414946
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了