CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems

CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略

基本信息

  • 批准号:
    1745561
  • 负责人:
  • 金额:
    $ 36.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systemsAssistive machines - like powered wheelchairs, myoelectric prostheses and robotic arms - promote independence and ability in those with severe motor impairments. As the state- of-the-art in these assistive Cyber-Physical Systems (CPSs) advances, more dexterous and capable machines hold the promise to revolutionize ways in which those with motor impairments can interact within society and with their loved ones, and to care for themselves with independence. However, as these machines become more capable, they often also become more complex. Which raises the question: how to control this added complexity? A new paradigm is proposed for controlling complex assistive Cyber-Physical Systems (CPSs), like robotic arms mounted on wheelchairs, via simple low-dimensional control interfaces that are accessible to persons with severe motor impairments, like 2-D joysticks or 1-D Sip-N-Puff interfaces. Traditional interfaces cover only a portion of the control space, and during teleoperation it is necessary to switch between different control modes to access the full control space. Robotics automation may be leveraged to anticipate when to switch between different control modes. This approach is a departure from the majority of control sharing approaches within assistive domains, which either partition the control space and allocate different portions to the robot and human, or augment the human's control signals to bridge the dimensionality gap. How to best share control within assistive domains remains an open question, and an appealing characteristic of this approach is that the user is kept maximally in control since their signals are not altered or augmented. The public health impact is significant, by increasing the independence of those with severe motor impairments and/or paralysis. Multiple efforts will facilitate large-scale deployment of our results, including a collaboration with Kinova, a manufacturer of assistive robotic arms, and a partnership with Rehabilitation Institute of Chicago. The proposal introduces a formalism for assistive mode-switching that is grounded in hybrid dynamical systems theory, and aims to ease the burden of teleoperating high-dimensional assistive robots. By modeling this CPS as a hybrid dynamical system, assistance can be modeled as optimization over a desired cost function. The system's uncertainty over the user's goals can be modeled via a Partially Observable Markov Decision Processes. This model provides the natural scaffolding for learning user preferences. Through user studies, this project aims to address the following research questions: (Q1) Expense: How expensive is mode-switching? (Q2) Customization Need: Do we need to learn mode-switching from specific users? (Q3) Learning Assistance: How can we learn mode-switching paradigms from a user? (Q4) Goal Uncertainty: How should the assistance act under goal uncertainty? How will users respond? The proposal leverages the teams shared expertise in manipulation, algorithm development, and deploying real-world robotic systems. The proposal also leverages the teams complementary strengths on deploying advanced manipulation platforms, robotic motion planning and manipulation, and human-robot comanipulation, and on robot learning from human demonstration, control policy adaptation, and human rehabilitation. The proposed work targets the easier operation of robotic arms by severely paralyzed users. The need to control many degrees of freedom (DoF) gives rise to mode-switching during teleoperation. The switching itself can be cumbersome even with 2- and 3-axis joysticks, and becomes prohibitively so with more limited (1-D) interfaces. Easing the operation of switching not only lowers this burden on those already able to operate robotic arms, but may open use to populations to whom assistive robotic arms are currently inaccessible. This work is clearly synergistic: at the intersection of robotic manipulation, human rehabilitation, control theory, machine learning, human-robot interaction and clinical studies. The project addresses the science of CPS by developing new models of the interaction dynamics between the system and the user, the technology of CPS by developing new interfaces and interaction modalities with strong theoretical foundations, and the engineering of CPS by deploying our algorithms on real robot hardware and extensive studies with able-bodied and users with sprinal cord injuries.
CPS:协同作用:合作研究:辅助网络物理系统的学习控制共享策略辅助机器-如电动轮椅,肌电假肢和机器人手臂-促进严重运动障碍者的独立性和能力。随着这些辅助性网络物理系统(CPS)的发展,更灵巧、更有能力的机器有望彻底改变那些有运动障碍的人在社会中和与亲人互动的方式,并独立地照顾自己。然而,随着这些机器变得越来越强大,它们往往也变得越来越复杂。这就提出了一个问题:如何控制这种增加的复杂性?提出了一种新的范例,用于控制复杂的辅助网络物理系统(CPS),如安装在轮椅上的机器人手臂,通过简单的低维控制接口,可以访问的人与严重的运动障碍,如2-D的摇杆或1-D的Sip-N-Puff接口。传统的接口只覆盖一部分控制空间,在遥操作过程中,需要在不同的控制模式之间切换才能访问整个控制空间。可以利用机器人自动化来预测何时在不同的控制模式之间切换。这种方法是从辅助领域内的大多数控制共享方法的出发点,该方法要么划分控制空间并将不同的部分分配给机器人和人类,要么增加人类的控制信号以弥合维度差距。如何在辅助领域内最好地共享控制仍然是一个悬而未决的问题,这种方法的一个吸引人的特点是,用户最大限度地保持控制,因为他们的信号没有改变或增强。通过提高严重运动障碍和/或瘫痪者的独立性,对公共卫生产生了重大影响。多方面的努力将促进我们的成果的大规模部署,包括与辅助机器人手臂制造商Kinova的合作,以及与芝加哥康复研究所的合作。该提案介绍了一种基于混合动力系统理论的辅助模式切换的形式主义,旨在减轻遥操作高维辅助机器人的负担。通过将该CPS建模为混合动力系统,可以将辅助建模为在期望的成本函数上的优化。系统对用户目标的不确定性可以通过部分可观测马尔可夫决策过程来建模。该模型为学习用户偏好提供了自然的框架。通过用户研究,本项目旨在解决以下研究问题:(Q1)模式切换的成本有多高?(Q2)定制需求:我们需要从特定用户那里学习模式切换吗?(Q3)学习辅助:我们如何从用户那里学习模式切换范例?(Q4)目标不确定性:在目标不确定的情况下,援助应该如何行动?用户将如何回应?该提案利用了团队在操作,算法开发和部署现实世界机器人系统方面的共享专业知识。该提案还利用了团队在部署先进操作平台、机器人运动规划和操作、人机协同操作以及机器人从人类演示、控制策略适应和人类康复中学习方面的互补优势。拟议的工作目标是让严重瘫痪的用户更容易操作机器人手臂。需要控制多个自由度(DoF),从而在遥操作过程中产生模式切换。即使使用2轴和3轴的摇杆,切换本身也可能很麻烦,并且对于更有限的(1-D)接口,切换本身变得非常困难。简化切换操作不仅可以减轻那些已经能够操作机器人手臂的人的负担,而且可以为目前无法使用辅助机器人手臂的人群开放使用。这项工作显然是协同的:在机器人操作,人类康复,控制理论,机器学习,人机交互和临床研究的交叉点。该项目通过开发系统与用户之间的交互动力学的新模型来解决CPS的科学,通过开发具有强大理论基础的新界面和交互方式来解决CPS的技术,以及通过在真实的机器人硬件上部署我们的算法来解决CPS的工程,并对身体健全的人和脊髓损伤的用户进行广泛的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Srinivasa其他文献

Siddhartha Srinivasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Srinivasa', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2024 Human-Robot Interaction Pioneers Workshop (HRI)
旅行:2024 年人机交互先锋研讨会 (HRI) 的 NSF 学生旅行补助金
  • 批准号:
    2414275
  • 财政年份:
    2024
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132848
  • 财政年份:
    2022
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CHS: Small: Towards Usability in Robotic Assistance: A Formalism for Robot-Assisted Feeding while Adjusting to User Preferences
CHS:小:迈向机器人辅助的可用性:机器人辅助喂养的形式主义,同时根据用户偏好进行调整
  • 批准号:
    2007011
  • 财政年份:
    2020
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1748582
  • 财政年份:
    2017
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1637748
  • 财政年份:
    2016
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
  • 批准号:
    1544797
  • 财政年份:
    2015
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
NRI-Small: Collaborative Research: Addressing Clutter and Uncertainty for Robotic Manipulation in Human Environments
NRI-Small:协作研究:解决人类环境中机器人操作的混乱和不确定性
  • 批准号:
    1208388
  • 财政年份:
    2012
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant

相似海外基金

CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1936599
  • 财政年份:
    2019
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
  • 批准号:
    1853257
  • 财政年份:
    2018
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1645578
  • 财政年份:
    2018
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1646235
  • 财政年份:
    2018
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
  • 批准号:
    1854321
  • 财政年份:
    2018
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
  • 批准号:
    1901728
  • 财政年份:
    2018
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
  • 批准号:
    1842710
  • 财政年份:
    2018
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
  • 批准号:
    1739964
  • 财政年份:
    2018
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
  • 批准号:
    1646566
  • 财政年份:
    2017
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
  • 批准号:
    1822332
  • 财政年份:
    2017
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了