I-Corps: Automatic Tuning for Prosthesis Based on Physiological Feedback
I-Corps:基于生理反馈的假肢自动调节
基本信息
- 批准号:1745597
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is to provide automatic prosthetic tuning technology that will enable the optimization of metabolic energy expenditure in impaired gait of amputee users. This product will simplify the process of tuning and will increase the performance of powered prosthetic legs to better assist users and provide more balance while maintaining a lower energy expenditure on residual muscles. Due to the product's user-friendly structure, it could easily be used in less-equipped environments, which will make the technology more accessible and eliminate the discomfort of long commutes to the prosthetic laboratory or clinics. This is a cost-effective solution for not only broader use of powered prosthetic legs, but also better efficiency of prosthetic laboratory and clinics to serve more prosthetic users. This will reduce the cost of maintaining powered prosthetic legs and, broaden the facilities that would offer these types of services. Also, since the system is automated a clinician will replace some of the tasks typically done by prosthetic experts, which is expected to reduce overall costs.This I-Corps project will explore the commercial potential of the core technology. Lower limb amputees use prosthetics for daily walking; however, walking with prosthesis typically requires much more metabolic energy expenditure than people with normal gait. Current state-of-the-art technology provides powered prosthetic legs to better assist amputees. To have the best assistance and to increase balance, these legs require a meticulous tuning procedure. It is currently conducted using an observation-based approach by prosthetic experts; however, this approach is not accurate and lacks objectivity. The developed technology is able to wirelessly collect body area sensor signals and provide computational algorithms to automatically setup powered prosthetic legs, which provides a novel and efficient technique for optimizing the metabolic energy expenditure in impaired gait of amputees. This technology will enable an accurate and objective tuning for the users, which is cost effective because it may reduce the need for frequent prosthetic clinics for prosthesis adaptation. In addition, the objective and accurate tuning will maximize the use of powered prosthetic legs.
I-Corps项目更广泛的影响/商业潜力是提供自动假肢调整技术,使截肢者步态受损时的代谢能量消耗得到优化。该产品将简化调整过程,并将提高动力假肢的性能,以更好地协助用户,提供更多的平衡,同时保持较低的能量消耗在残余肌肉上。由于该产品的用户友好型结构,它可以很容易地在设备较少的环境中使用,这将使该技术更容易获得,并消除长途通勤到假肢实验室或诊所的不适。这是一种高性价比的解决方案,不仅可以更广泛地使用动力假肢腿,还可以提高假肢实验室和诊所的效率,为更多的假肢用户服务。这将降低维护动力假肢的成本,并扩大提供这类服务的设施。此外,由于该系统是自动化的,临床医生将取代一些通常由假肢专家完成的任务,这有望降低总体成本。这个I-Corps项目将探索核心技术的商业潜力。下肢截肢者使用假肢进行日常行走;然而,与正常步态的人相比,使用假肢走路通常需要更多的代谢能量消耗。目前最先进的技术提供了动力假肢,以更好地帮助截肢者。为了有最好的辅助和增加平衡,这些腿需要一个细致的调整程序。目前由假肢专家使用基于观察的方法进行;然而,这种方法不准确,缺乏客观性。该技术能够无线采集人体区域传感器信号,并提供计算算法自动设置动力义肢,为截肢者步态受损的代谢能量消耗优化提供了一种新颖有效的技术。这项技术将为用户提供准确和客观的调整,这是具有成本效益的,因为它可以减少频繁的假肢诊所对假肢适应的需求。此外,客观准确的调整将最大限度地利用动力义肢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ou Bai其他文献
Time to Lymphoma Treatment within 24 Months in Watchful Waiting Follicular Lymphoma Defines Patients at High Risk for Progression: A Multicenter Analysis
- DOI:
10.1182/blood-2023-174308 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Fenghua Gao;Jing Liu;Jiesong Wang;Lihong Liu;Zhiming Li;Yuqin Song;Xudong Zhang;Hui Zhou;Xiuhua Sun;Wei Zhang;Bing Xu;Liping Su;Wen Shujuan;Rong Tao;Ou Bai;Qingyuan Zhang;Liqun Zou;Xianhuo Wang;Huilai Zhang - 通讯作者:
Huilai Zhang
FFA Promoting Proliferation and Migration Via Classical Wnt Signaling Pathway in Peripheral T Cell Lymphoma
- DOI:
10.1182/blood-2022-170462 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Wei Guo;Xingtong Wang;Chunshui Liu;Yan Li;Ou Bai - 通讯作者:
Ou Bai
C-Terminal Pro-Gly-Pro Tripeptide in Contrast to Full-Length Neuropeptide Semax Exhibits No Neuroprotective Effect in Experimental Cerebral Ischemia
- DOI:
10.1007/s10517-005-0311-5 - 发表时间:
2005-04-01 - 期刊:
- 影响因子:0.600
- 作者:
O. E. Fadyukova;A. Kadi;Ou Bai;G. M. Andzhusheva;V. B. Koshelev - 通讯作者:
V. B. Koshelev
Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China
- DOI:
10.1186/s13045-017-0439-6 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:40.400
- 作者:
Yuankai Shi;Bo Jia;Wei Xu;Wenyu Li;Ting Liu;Peng Liu;Weili Zhao;Huilai Zhang;Xiuhua Sun;Haiyan Yang;Xi Zhang;Jie Jin;Zhengming Jin;Zhiming Li;Lugui Qiu;Mei Dong;Xiaobing Huang;Yi Luo;Xiaodong Wang;Xin Wang;Jianqiu Wu;Jingyan Xu;Pingyong Yi;Jianfeng Zhou;Hongming He;Lin Liu;Jianzhen Shen;Xiaoqiong Tang;Jinghua Wang;Jianmin Yang;Qingshu Zeng;Zhihui Zhang;Zhen Cai;Xiequn Chen;Kaiyang Ding;Ming Hou;Huiqiang Huang;Xiaoling Li;Rong Liang;Qifa Liu;Yuqin Song;Hang Su;Yuhuan Gao;Lihong Liu;Jianmin Luo;Liping Su;Zimin Sun;Huo Tan;Huaqing Wang;Jingwen Wang;Shuye Wang;Hongyu Zhang;Xiaohong Zhang;Daobin Zhou;Ou Bai;Gang Wu;Liling Zhang;Yizhuo Zhang - 通讯作者:
Yizhuo Zhang
A high data rate, multi-nodes wireless personal-area sensor network for real-time data acquisition and control
用于实时数据采集和控制的高数据速率、多节点无线个人区域传感器网络
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Qisong Wang;Xin Chai;Y. Wang;Dan Liu;Ming Chen;Yong Li;Xin Liu;Ou Bai - 通讯作者:
Ou Bai
Ou Bai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ou Bai', 18)}}的其他基金
SCC-PG: Closed-loop Intervention to Promote a Supportive and Interactive Environment around Children
SCC-PG:闭环干预,促进儿童周围的支持性和互动环境
- 批准号:
2125549 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Mobile, Smart Gait Assessment System
I-Corps:移动智能步态评估系统
- 批准号:
1849087 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CPS: Synergy: Sensor Network-Based Lower-Limb Prosthetic Optimization and Control
CPS:协同:基于传感器网络的下肢假肢优化和控制
- 批准号:
1552163 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CPS: Synergy: Sensor Network-Based Lower-Limb Prosthetic Optimization and Control
CPS:协同:基于传感器网络的下肢假肢优化和控制
- 批准号:
1446737 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Development of performance parameter optimization tools for automatic tuning
自动调优性能参数优化工具开发
- 批准号:
23K11126 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic Knobs Tuning via Deep Reinforcement Learning
通过深度强化学习自动调节旋钮
- 批准号:
575145-2022 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
University Undergraduate Student Research Awards
Study on automatic tuning method for PMSM sensorless control using deep learning without adjustment process
基于深度学习的PMSM无传感器控制自动整定方法研究,无需调整过程
- 批准号:
20K04451 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic RF Signal Tuning and Matching System for MR Imaging and Spectroscopy
用于 MR 成像和光谱学的自动射频信号调谐和匹配系统
- 批准号:
10063522 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Automatic Parameter Tuning for Reinforcement Learning Algorithms
强化学习算法的自动参数调整
- 批准号:
511711-2017 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
University Undergraduate Student Research Awards
Automatic Energy Tuning of Parallel Applications on a Hybrid Supercomputer
混合超级计算机上并行应用的自动能量调整
- 批准号:
LP150100837 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Linkage Projects
Automatic RF Signal Tuning and Matching System for MR Imaging and Spectroscopy
用于 MR 成像和光谱学的自动射频信号调谐和匹配系统
- 批准号:
9033206 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Automatic problem identifier and parameter tuning in local optimization
局部优化中的自动问题识别和参数调整
- 批准号:
483291-2015 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Engage Grants Program
III: Small: Automatic Database Management System Tuning Through Large-scale Machine Learning
III:小型:通过大规模机器学习自动调整数据库管理系统
- 批准号:
1423210 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
The study of automatic tuning of a task program based on its structure
基于任务程序结构的自动调优研究
- 批准号:
24500248 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)