RTG: Randomized Numerical Analysis

RTG:随机数值分析

基本信息

  • 批准号:
    1745654
  • 负责人:
  • 金额:
    $ 214万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Classical methods from scientific computing were designed with the natural goal of finding exact answers to exact questions. Such methods cannot address most of today's large and complex computational models. This research training group focuses on the development of methods which aim instead at providing approximate answers to approximate questions thereby opening up the door for new generations of numerical tools well adapted to 21st century problems. The program provides training opportunities for undergraduate, graduate, and postdoctoral participants who benefit from their integration in vertically structured working groups. It is important for Science, Technology Engineering and Math (STEM) students to have professional skills extending beyond technical expertise; they must be able to communicate their results to non-technical audiences in clear, compelling and engaging ways. Through its emphasis on multi-layered working groups, the program offers a prime training ground for its participants to gain the communication skills necessary to bridge disciplinary divides, as is required for work addressing most of society's grand challenges. The program also involves the development of new course material, both online and on campus, that reflects and addresses challenges in present-day scientific computing.The paradigm of numerical analysis as the study of algorithms for the problems of continuous mathematics needs to be updated. An increasing number of data intensive applications are better described through discrete mathematics in terms of graphs or networks rather than through the smooth manifolds of continuous mathematics. Additionally, current computational models are often neither well-posed nor well-conditioned; new approaches are needed. The program addresses this pressing need by using randomization as the key scientific tool. The research is organized around three complementary thrusts in numerical linear algebra, nonlinear solvers and global sensitivity analysis. By analyzing the effect on numerical solutions of perturbations caused by randomization, or corrupted data, the first two thrusts fill a critical gap in the theoretical foundation to numerical analysis under large perturbations and low accuracy: even the notion of numerical solution has to be revisited. The third thrust aims at reducing model complexity through novel sensitivity analysis methods and the use of surrogate models; this thrust both capitalizes on and contributes to the previous two.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学计算的经典方法的设计自然是为了找到确切问题的确切答案。这些方法不能解决当今大多数大型和复杂的计算模型。这个研究培训小组的重点是方法的发展,而不是旨在提供近似的答案近似的问题,从而打开了大门,为新一代的数值工具,以及适应21世纪世纪的问题。该计划为本科生,研究生和博士后参与者提供培训机会,他们从垂直结构的工作组中受益。重要的是科学,技术工程和数学(STEM)的学生要有专业技能,超越技术专业知识;他们必须能够传达他们的结果,以明确的,引人注目的和吸引人的方式非技术观众。通过强调多层次的工作组,该计划为参与者提供了一个主要的培训场所,以获得弥合学科鸿沟所需的沟通技能,这是解决大多数社会重大挑战所需的工作。该计划还涉及新的课程材料的开发,无论是在网上和校园,反映和解决当今科学计算的挑战。数值分析的范式作为连续数学问题的算法研究需要更新。越来越多的数据密集型应用程序更好地描述通过离散数学的图形或网络,而不是通过连续数学的光滑流形。此外,目前的计算模型往往既不是适定的,也没有良好的条件,需要新的方法。该计划通过使用随机化作为关键的科学工具来解决这一迫切需求。本研究围绕数值线性代数、非线性求解器和全局灵敏度分析三个互补的方向展开。通过分析随机化或损坏的数据引起的扰动对数值解的影响,前两个推力填补了大扰动和低精度下数值分析理论基础的关键空白:甚至数值解的概念也必须重新审视。第三个目标是通过新颖的敏感性分析方法和使用替代模型来降低模型的复杂性;这个目标既利用了前两个目标,又对前两个目标做出了贡献。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A data-driven surrogate model to rapidly predict microstructure morphology during physical vapor deposition
  • DOI:
    10.1016/j.apm.2020.06.046
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Herman, Elizabeth;Stewart, James A.;Dingreville, Remi
  • 通讯作者:
    Dingreville, Remi
Robustness of the Sobol' Indices to Marginal Distribution Uncertainty
Classification of orthostatic intolerance through data analytics
Faster stochastic trace estimation with a Chebyshev product identity
使用切比雪夫产品恒等式更快地进行随机迹线估计
  • DOI:
    10.1016/j.aml.2021.107246
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hallman, Eric
  • 通讯作者:
    Hallman, Eric
A Bayesian Conjugate Gradient Method (with Discussion)
贝叶斯共轭梯度法(带讨论)
  • DOI:
    10.1214/19-ba1145
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Cockayne, Jon;Oates, Chris J.;Ipsen, Ilse C.F.;Girolami, Mark
  • 通讯作者:
    Girolami, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilse C.F. Ipsen其他文献

Ilse C.F. Ipsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilse C.F. Ipsen', 18)}}的其他基金

NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
  • 批准号:
    2209510
  • 财政年份:
    2022
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Randomization as a Resource for Rapid Prototyping
FRG:协作研究:随机化作为快速原型制作的资源
  • 批准号:
    1760374
  • 财政年份:
    2018
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
2015 Gene Golub SIAM Summer School (G2S3): Randomization in Numerical Linear Algebra (RandNLA)
2015 Gene Golub SIAM 暑期学校 (G2S3):数值线性代数随机化 (RandNLA)
  • 批准号:
    1522231
  • 财政年份:
    2015
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Early-Career and Student Support for the XIX Householder Symposium, June 8-13, 2014
第十九届住户研讨会的早期职业和学生支持,2014 年 6 月 8 日至 13 日
  • 批准号:
    1415152
  • 财政年份:
    2014
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Early Career and Student Support for the XVIII Householder Symposium
第十八届住户研讨会的早期职业和学生支持
  • 批准号:
    1125906
  • 财政年份:
    2011
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
EAGER: Numerical Accuracy of Randomized Algorithms for Matrix Multiplication and Least Squares
EAGER:矩阵乘法和最小二乘随机算法的数值精度
  • 批准号:
    1145383
  • 财政年份:
    2011
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    0209695
  • 财政年份:
    2002
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Workshop on Krylov Subspace Methods and Applications
数学科学:克雷洛夫子空间方法与应用研讨会
  • 批准号:
    9415578
  • 财政年份:
    1994
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Relative Perturbation Techniques for Eigenvalue and Singular Value Decompositions
特征值和奇异值分解的相对扰动技术
  • 批准号:
    9400921
  • 财政年份:
    1994
  • 资助金额:
    $ 214万
  • 项目类别:
    Continuing Grant
Numerical Control Structures for the Computation of Large Eigenvalue and Singular Value Problems
用于计算大特征值和奇异值问题的数控结构
  • 批准号:
    9496115
  • 财政年份:
    1993
  • 资助金额:
    $ 214万
  • 项目类别:
    Continuing Grant

相似海外基金

DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 214万
  • 项目类别:
    Research Grant
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    2313434
  • 财政年份:
    2023
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309445
  • 财政年份:
    2023
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309446
  • 财政年份:
    2023
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152704
  • 财政年份:
    2022
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152687
  • 财政年份:
    2022
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1661760
  • 财政年份:
    2016
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1447283
  • 财政年份:
    2014
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1447534
  • 财政年份:
    2014
  • 资助金额:
    $ 214万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了