Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
基本信息
- 批准号:2152704
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In many scientific applications such as genetics, geophysics, bioinformatics, and medicine, data are being generated at ever-increasing rates. For these, and other data-intensive applications, the massive size of the data sets, as well as the growing model complexities, present fundamental computational challenges. State-of-the-art inference methods have exceeded their limits of applicability and advanced mathematical, computational, and statistical tools are urgently needed to extract relevant information. This research addresses the urgent need to advance efficient methods for computing solutions of large-scale inverse problems. This project will advance tools from inverse problems which will be merged with novel approaches from randomized numerical linear algebra, and sparse principal component analysis. The expanded tools produced by this project will have the ability to transform the field of large-scale inverse problems and subsequently benefit a wide variety of applications.The development of novel approaches for large-scale inversion will significantly advance current solutions in a wide range of applications, such as machine learning, geophysics, and genetics. This project will investigate advanced iterative methods for inverse problems, randomization, sketching schemes, as well as methods for sparse principal component analysis. By accelerating numerical methods, providing theoretical convergence analysis, and producing a user-friendly software package, the broader scientific community will be able to integrate these advanced tools within their application areas. The project offers training opportunities for students in computational and applied mathematics. These include the implementation of a novel cross-institutional graduate course, merging the expertise of the three PIs in the topics of inverse problems, randomized linear algebra, and numerical optimization, to provide a broader opportunity for graduate students to engage in timely research projects; connect with their peers across the US; and expand the diversity pool of students in our programs. Collaborations between the project team and domain experts guarantee that the proposed algorithms and software will have an impact on real data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在遗传学、地球物理学、生物信息学和医学等许多科学应用中,数据正在以越来越快的速度产生。对于这些和其他数据密集型应用程序,数据集的巨大规模以及日益增长的模型复杂性构成了基本的计算挑战。最先进的推理方法已经超出了它们的适用范围,迫切需要先进的数学、计算和统计工具来提取相关信息。这项研究迫切需要提出有效的方法来计算大规模反问题的解。这个项目将推进反问题的工具,这些工具将与随机数值线性代数和稀疏主成分分析的新方法相结合。这个项目产生的扩展工具将有能力改变大规模逆问题的领域,从而造福于广泛的应用。大规模逆问题新方法的发展将极大地促进当前在机器学习、地球物理和遗传学等广泛应用中的解决方案。该项目将研究反问题的高级迭代方法、随机化、草图方案以及稀疏主成分分析方法。通过加速数值方法,提供理论收敛分析,并制作一个用户友好的软件包,更广泛的科学界将能够将这些先进的工具整合到他们的应用领域中。该项目为学生提供计算和应用数学方面的培训机会。这些措施包括实施一项新颖的跨院校研究生课程,融合三位PI在反问题、随机化线性代数和数值优化方面的专业知识,为研究生提供更广泛的机会从事及时的研究项目;与美国各地的同行建立联系;以及扩大我们项目中的多样性学生池。项目团队和领域专家之间的合作保证建议的算法和软件将对真实数据产生影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning spectral windowing parameters for regularization using unbiased predictive risk and generalized cross validation techniques for multiple data sets
- DOI:10.3934/ipi.2023006
- 发表时间:2021-12
- 期刊:
- 影响因子:1.3
- 作者:Michael J. Byrne;R. Renaut
- 通讯作者:Michael J. Byrne;R. Renaut
The northeastern Algeria hydrothermal system: gravimetric data and structural implication
- DOI:10.1186/s40517-023-00258-2
- 发表时间:2023-05-23
- 期刊:
- 影响因子:4.2
- 作者:Bayou,Yasser;Abtout,Abdeslam;Berguig,Mohamed Cherif
- 通讯作者:Berguig,Mohamed Cherif
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosemary Renaut其他文献
Special Issue on Mathematical Methods in Medical Imaging
- DOI:
10.1007/s10915-012-9576-9 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:3.300
- 作者:
Anne Gelb;Rosemary Renaut;Svetlana Roudenko;Douglas Cochran - 通讯作者:
Douglas Cochran
Rosemary Renaut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rosemary Renaut', 18)}}的其他基金
Approximate Singular Value Expansions and Solutions of Ill-Posed Problems
近似奇异值展开及不适定问题的解
- 批准号:
1913136 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Computational techniques for nonlinear joint inversion
合作研究:非线性联合反演计算技术
- 批准号:
1418377 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Algorithms for Total Least Squares: Development, Evaluation and Novel Applications
总体最小二乘算法:开发、评估和新颖应用
- 批准号:
0513214 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
9977234 - 财政年份:1999
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Solutions of Partial Differential Equations
数学科学:偏微分方程的数值解
- 批准号:
9402943 - 财政年份:1995
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
U.S.-Switzerland Cooperative Research on Order Stars, Riemann Surfaces, and Implicit Solutions of Hyperbolic Problems (Applied Mathematics)
美国-瑞士合作研究有序星、黎曼曲面和双曲问题的隐式解(应用数学)
- 批准号:
9123314 - 财政年份:1992
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Development and Performance Evaluation of Parallel Algorithms for Synthetic Seismograms
合成地震图并行算法的开发和性能评估
- 批准号:
8812147 - 财政年份:1988
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2331033 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309445 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309446 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209510 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2208339 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209509 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
- 批准号:
2230795 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2208340 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant














{{item.name}}会员




