Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
基本信息
- 批准号:2152661
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In many scientific applications such as genetics, geophysics, bioinformatics, and medicine, data are being generated at ever-increasing rates. For these, and other data-intensive applications, the massive size of the data sets, as well as the growing model complexities, present fundamental computational challenges. State-of-the-art inference methods have exceeded their limits of applicability and advanced mathematical, computational, and statistical tools are urgently needed to extract relevant information. This research addresses the urgent need to advance efficient methods for computing solutions of large-scale inverse problems. This project will advance tools from inverse problems which will be merged with novel approaches from randomized numerical linear algebra, and sparse principal component analysis. The expanded tools produced by this project will have the ability to transform the field of large-scale inverse problems and subsequently benefit a wide variety of applications.The development of novel approaches for large-scale inversion will significantly advance current solutions in a wide range of applications, such as machine learning, geophysics, and genetics. This project will investigate advanced iterative methods for inverse problems, randomization, sketching schemes, as well as methods for sparse principal component analysis. By accelerating numerical methods, providing theoretical convergence analysis, and producing a user-friendly software package, the broader scientific community will be able to integrate these advanced tools within their application areas. The project offers training opportunities for students in computational and applied mathematics. These include the implementation of a novel cross-institutional graduate course, merging the expertise of the three PIs in the topics of inverse problems, randomized linear algebra, and numerical optimization, to provide a broader opportunity for graduate students to engage in timely research projects; connect with their peers across the US; and expand the diversity pool of students in our programs. Collaborations between the project team and domain experts guarantee that the proposed algorithms and software will have an impact on real data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多科学应用中,如遗传学,生物物理学,生物信息学和医学,数据正在以不断增长的速度生成。对于这些和其他数据密集型应用,数据集的巨大规模以及不断增长的模型复杂性提出了基本的计算挑战。国家的最先进的推理方法已经超出了其适用性和先进的数学,计算和统计工具,迫切需要提取相关信息的限制。这项研究解决了迫切需要推进有效的方法来计算大规模反问题的解决方案。这个项目将推进反问题的工具,这些工具将与随机数值线性代数和稀疏主成分分析的新方法相结合。该项目产生的扩展工具将有能力改变大规模反问题领域,并随后使各种各样的应用受益。大规模反问题的新方法的开发将在机器学习、生物物理学和遗传学等广泛的应用中显着推进当前的解决方案。本专题将探讨逆问题、随机化、草图绘制方案的高级迭代方法,以及稀疏主成分分析方法。通过加速数值方法,提供理论收敛分析,并制作一个用户友好的软件包,更广泛的科学界将能够将这些先进的工具整合到其应用领域。该项目为学生提供计算和应用数学方面的培训机会。其中包括实施一个新的跨机构研究生课程,合并三个PI在反问题,随机线性代数和数值优化的主题的专业知识,为研究生提供更广泛的机会,以从事及时的研究项目;与美国各地的同行联系;并扩大我们课程中学生的多样性。项目团队和领域专家之间的合作保证了提出的算法和软件将对真实的数据产生影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient learning methods for large-scale optimal inversion design
- DOI:10.3934/naco.2022036
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Julianne Chung;Matthias Chung;S. Gazzola;M. Pasha
- 通讯作者:Julianne Chung;Matthias Chung;S. Gazzola;M. Pasha
Least-squares finite element method for ordinary differential equations
常微分方程的最小二乘有限元法
- DOI:10.1016/j.cam.2022.114660
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Chung, Matthias;Krueger, Justin;Liu, Honghu
- 通讯作者:Liu, Honghu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Chung其他文献
Kiosk 7R-FB-01 - Optimizing 5D FBee Running Motion Resolved Reconstruction Using Variable Projection Augmented Lagrangian Method
亭 7R-FB-01 - 使用可变投影增广拉格朗日方法优化 5D FBee 运行运动解析重建
- DOI:
10.1016/j.jocmr.2024.100804 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Yitong Yang;Matthias Chung;Jerome Yerly;Davide Piccini;Matthias Stuber;John Oshinski - 通讯作者:
John Oshinski
Image reconstructions using sparse dictionary representations and implicit, non-negative mappings
使用稀疏字典表示和隐式非负映射进行图像重建
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Elizabeth Newman;Jack Michael Solomon;Matthias Chung - 通讯作者:
Matthias Chung
Population modelling by examples ii
群体建模实例 ii
- DOI:
10.22360/summersim.2016.scsc.060 - 发表时间:
2016 - 期刊:
- 影响因子:5.5
- 作者:
Robert J. Smith;Bruce Y. Lee;A. Moustakas;A. Zeigler;M. Prague;Romualdo Santos;Matthias Chung;R. Gras;Valery Forbes;S. Borg;T. Comans;Yifei Ma;N. Punt;W. Jusko;L. Brotz;A. Hyder - 通讯作者:
A. Hyder
Physics-informed neural networks for predicting liquid dairy manure temperature during storage
用于预测储存期间液态奶牛粪便温度的物理信息神经网络
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rana A. Genedy;Matthias Chung;J. Ogejo - 通讯作者:
J. Ogejo
Optimal Regularized Inverse Matrices for Inverse Problems
反问题的最优正则逆矩阵
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.5
- 作者:
Julianne Chung;Matthias Chung - 通讯作者:
Matthias Chung
Matthias Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Chung', 18)}}的其他基金
Planning I/UCRC Virginia Polytechnic Institute and State University: Center for Advanced Subsurface Earth Resource Models
规划 I/UCRC 弗吉尼亚理工学院和州立大学:高级地下地球资源模型中心
- 批准号:
1650463 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Stochastic Approximations for the Solution and Uncertainty Analysis of Data-Intensive Inverse Problems
合作研究:数据密集型反问题的求解和不确定性分析的随机近似
- 批准号:
1723005 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2331033 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309445 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309446 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152704 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209510 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2208339 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209509 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
- 批准号:
2230795 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2208340 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant