EAGER: Joint Modeling and Querying of Social Media and Video Data
EAGER:社交媒体和视频数据的联合建模和查询
基本信息
- 批准号:1746031
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the amount of user generated data increases, it becomes more challenging to effectively search this data for useful information. There has been work on how to search text social media posts, such as Tweets, or videos. However, searching on these sources using separate tools is ineffective because the information links between them are lost; for instance, one cannot automatically match social network posts with activities seen on a video. As an example, consider a set of tweets and videos (which may be posted on Twitter or other media) generated during a riot. A police detective would like to jointly search this data to find material related to a specific incident like a car fire. Some tweets (with no contained video) may comment on the car fire, while a video segment from another tweet shows the car during or after the fire. Linking the videos with the relevant social media posts, which is the focus of this project, can greatly reduce the effort in searching for useful information. The successful completion of this project has the potential to improve the productivity of people who search in social media, such as police detectives, journalists of disaster management authorities. This project will also strengthen and extend the ongoing undergraduate research and high school outreach activities of the investigators.The objective of this project is to focus on the fundamental research tasks that would allow for joint modeling of social network and video data. Then, given a set of posts, the system would find relevant video segments and vice versa, by defining a common feature space for social media and video data. This proof-of-concept project will be evaluated on posts and videos shared on the Twitter platform. This is the right time to tackle this problem given the recent advances in deep learning and big data management technologies. A key risk is that the semantics in a tweet may not be enough to map it to a video segment; for that, the context (e.g., tweets from closely related users) of the tweet may need to be leveraged.
随着用户生成的数据量的增加,有效地搜索这些数据以获得有用信息变得更具挑战性。人们一直在研究如何搜索文本社交媒体帖子,如推文或视频。 然而,使用单独的工具搜索这些来源是无效的,因为它们之间的信息链接丢失了;例如,人们不能自动将社交网络帖子与视频上看到的活动相匹配。举个例子,考虑一组在骚乱期间生成的推文和视频(可能发布在Twitter或其他媒体上)。一名警探希望联合搜索这些数据,以找到与汽车火灾等特定事件相关的材料。一些推文(没有包含视频)可能会对汽车火灾发表评论,而另一条推文的视频片段则显示了火灾期间或之后的汽车。将视频与相关的社交媒体帖子链接,这是该项目的重点,可以大大减少搜索有用信息的工作。该项目的成功完成有可能提高在社交媒体上搜索的人的生产力,如警察侦探,灾害管理当局的记者。该项目还将加强和扩大正在进行的本科生研究和高中外展活动的调查人员。该项目的目标是集中在基础研究任务,将允许社会网络和视频数据的联合建模。然后,给定一组帖子,系统将通过定义社交媒体和视频数据的公共特征空间来找到相关的视频片段,反之亦然。这个概念验证项目将在Twitter平台上分享的帖子和视频中进行评估。 鉴于深度学习和大数据管理技术的最新进展,现在是解决这个问题的正确时机。一个关键的风险是,推文中的语义可能不足以将其映射到视频片段;为此,上下文(例如,来自密切相关用户的推文)可能需要被利用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Webly Supervised Joint Embedding for Cross-Modal Image-Text Retrieval
- DOI:10.1145/3240508.3240712
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Niluthpol Chowdhury Mithun;Rameswar Panda;E. Papalexakis;A. Roy-Chowdhury
- 通讯作者:Niluthpol Chowdhury Mithun;Rameswar Panda;E. Papalexakis;A. Roy-Chowdhury
Exploiting the Earth’s Spherical Geometry to Geolocate Images
利用地球的球形几何形状对图像进行地理定位
- DOI:10.1007/978-3-030-46147-8_1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Izbicki M., Papalexakis E.E.
- 通讯作者:Izbicki M., Papalexakis E.E.
Task Planning on Stochastic Aisle Graphs for Precision Agriculture
- DOI:10.1109/lra.2021.3062337
- 发表时间:2021-04-01
- 期刊:
- 影响因子:5.2
- 作者:Kan, Xinyue;Thayer, Thomas C.;Karydis, Konstantinos
- 通讯作者:Karydis, Konstantinos
SamBaTen: Sampling-based Batch Incremental Tensor Decomposition
- DOI:10.1137/1.9781611975321.44
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Ekta Gujral;Ravdeep Pasricha;E. Papalexakis
- 通讯作者:Ekta Gujral;Ravdeep Pasricha;E. Papalexakis
Identifying and Alleviating Concept Drift in Streaming Tensor Decomposition
- DOI:10.1007/978-3-030-10928-8_20
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Ravdeep Pasricha;Ekta Gujral;E. Papalexakis
- 通讯作者:Ravdeep Pasricha;Ekta Gujral;E. Papalexakis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evangelos Christidis其他文献
Evangelos Christidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evangelos Christidis', 18)}}的其他基金
III: Small: Rethinking the Data Organization and Lifecycle in LSM Storage Systems
III:小:重新思考 LSM 存储系统中的数据组织和生命周期
- 批准号:
2227669 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Medium: Efficient Collaborative Perception over Controllable Agent Networks
III:媒介:可控代理网络上的高效协作感知
- 批准号:
1901379 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: A Collaborative Adaptive Data Sharing Platform
职业:协作自适应数据共享平台
- 批准号:
1216007 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
III-CXT-Small: Information Discovery on Domain Data Graphs
III-CXT-Small:领域数据图上的信息发现
- 批准号:
1216032 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: A Collaborative Adaptive Data Sharing Platform
职业:协作自适应数据共享平台
- 批准号:
0952347 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
III: Travel Support for US-Based Students to Attend the 2009 IEEE International Conference on Data Mining (ICDM 2009)
III:为美国学生参加 2009 年 IEEE 国际数据挖掘会议 (ICDM 2009) 提供差旅支持
- 批准号:
0949134 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III-CXT-Small: Information Discovery on Domain Data Graphs
III-CXT-Small:领域数据图上的信息发现
- 批准号:
0811922 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
基于双稳健共享参数Joint模型的脑卒中早期关键风险因素推断研究
- 批准号:81803337
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
International joint research of geospace variability by combining multi-point ground and satellite observations and modeling
通过多点地面和卫星观测与建模相结合的地球空间变异性国际联合研究
- 批准号:
22K21345 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
Modeling Humans: Defining In Vivo Joint and Contact Characteristics
人体建模:定义体内关节和接触特征
- 批准号:
RGPIN-2018-06382 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Joint modeling of multiple outcomes over space and time (JMMOST): A Bayesian approach
空间和时间上多种结果的联合建模 (JMMOST):贝叶斯方法
- 批准号:
RGPIN-2022-03740 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
- 批准号:
573853-2022 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
University Undergraduate Student Research Awards
Statistical methods for joint modeling and dynamic predictions for clustered data
聚类数据联合建模和动态预测的统计方法
- 批准号:
RGPIN-2019-06549 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
- 批准号:
559863-2021 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Joint Modeling of Multiple Data Sources
多数据源联合建模
- 批准号:
RGPIN-2019-04404 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Development of new methods for the joint modeling of longitudinal and survival data with applications in finance and insurance
开发纵向数据和生存数据联合建模的新方法及其在金融和保险中的应用
- 批准号:
557209-2020 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Alliance Grants
Joint differentiation-state plasticity and genetic diversity modeling to predict response and improve efficacy of drug combination therapy
联合分化状态可塑性和遗传多样性模型可预测反应并提高药物联合治疗的疗效
- 批准号:
10620102 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:














{{item.name}}会员




