EAGER: Leveraging Synthetic Data for Visual Reasoning and Representation Learning with Minimal Human Supervision
EAGER:在最少的人类监督下利用合成数据进行视觉推理和表示学习
基本信息
- 批准号:1748387
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates how synthetic data created using computer graphics can be used for developing algorithms that understand visual data. Synthetic data provides flexibility that is difficult to obtain with real-world imagery, and enables opportunities to explore problems that would be difficult to solve with real-world imagery alone. This project develops new algorithms for reasoning about object occlusions, and for self-supervised representation learning, in which useful image features are developed without the aid of human-annotated semantic labels. The project provides new algorithms that have the potential to benefit applications in autonomous systems and security. In addition to scientific impact, the project performs complementary educational and outreach activities that engage students in research and STEM.This research explores novel algorithms that learn from synthetic data for visual reasoning and representation learning. While the use of synthetic data has a long history in computer vision, it has mainly been used to complement natural image data to solve standard tasks. In contrast, this project uses synthetic data to make advances in relatively unexplored problems, in which ground-truth is difficult to obtain given real-world imagery. The project consists of three major thrusts, each of which exploits the fact that a user has full control of everything that happens in a synthetic dataset. In Thrust I, it investigates a novel approach to representation learning using synthetic data, and in Thrust II, it extends the algorithm to disentangle task-specific and general-purpose features. Finally, in Thrust III, it explores a novel approach for reasoning about object occlusions.
这个项目研究如何使用计算机图形创建的合成数据可以用于开发理解视觉数据的算法。合成数据提供了现实世界图像难以获得的灵活性,并使探索仅使用现实世界图像难以解决的问题成为可能。该项目开发了用于对象遮挡推理的新算法,以及用于自监督表示学习的新算法,其中在没有人工注释语义标签的帮助下开发有用的图像特征。该项目提供了新的算法,有可能在自主系统和安全应用中受益。除了科学影响外,该项目还开展了补充教育和推广活动,吸引学生参与研究和STEM。本研究探索了从视觉推理和表征学习的合成数据中学习的新算法。虽然在计算机视觉中使用合成数据已经有很长的历史,但它主要用于补充自然图像数据以解决标准任务。相比之下,该项目使用合成数据在相对未探索的问题上取得进展,在这些问题上,给定真实世界的图像很难获得地面真相。该项目包括三个主要重点,每个重点都利用了这样一个事实,即用户可以完全控制合成数据集中发生的一切。在第一篇文章中,作者研究了一种使用合成数据进行表征学习的新方法,在第二篇文章中,作者扩展了该算法,以区分特定任务和通用功能。最后,在推力III中,它探索了一种新的方法来推理物体遮挡。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow Estimation on Large-Scale Point Clouds
- DOI:10.1109/cvpr.2019.00337
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Xiuye Gu;Yijie Wang;Chongruo Wu;Yong Jae Lee;Panqu Wang
- 通讯作者:Xiuye Gu;Yijie Wang;Chongruo Wu;Yong Jae Lee;Panqu Wang
SinGAN-GIF: Learning a Generative Video Model from a Single GIF
- DOI:10.1109/wacv48630.2021.00135
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Rajat Arora;Yong Jae Lee
- 通讯作者:Rajat Arora;Yong Jae Lee
You Reap What You Sow: Using Videos to Generate High Precision Object Proposals for Weakly-Supervised Object Detection
- DOI:10.1109/cvpr.2019.00964
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Krishna Kumar Singh;Yong Jae Lee
- 通讯作者:Krishna Kumar Singh;Yong Jae Lee
Boxer: Preventing fraud by scanning credit cards
Boxer:通过扫描信用卡防止欺诈
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Abi Din, Zainul;Venugopalan, Hari;Park, Jaime;Li, Andy;Yin, Weisu;Mai, Haohui;Lee, Yong Jae;Liu, Steven;King, Samuel
- 通讯作者:King, Samuel
MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation
- DOI:10.1109/cvpr42600.2020.00806
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Yuheng Li;Krishna Kumar Singh;Utkarsh Ojha;Yong Jae Lee
- 通讯作者:Yuheng Li;Krishna Kumar Singh;Utkarsh Ojha;Yong Jae Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Jae Lee其他文献
Who Moved My Cheese? Automatic Annotation of Rodent Behaviors with Convolutional Neural Networks
谁动了我的奶酪?
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhongzheng Ren;Adriana Noronha Annie;Vogel Ciernia;Yong Jae Lee - 通讯作者:
Yong Jae Lee
Pancytopenia Associated with Hypopituitarism in an Acromegaly Patient: A Case Report and a Review of the Literature
肢端肥大症患者全血细胞减少症与垂体机能减退相关:病例报告及文献综述
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
J. Koh;Yong Jae Lee;J. Kang;B. Choi;Y. Jeon;Sang Soo Kim;B. Kim;I. Kim - 通讯作者:
I. Kim
Mo1763 - Fecal Calprotectin Versus Fecal Immunochemical Test for the Prediction of Mucosal Healing and Endoscopic Activity in Ulcerative Colitis
- DOI:
10.1016/s0016-5085(17)32683-5 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Dae Gon Ryu;Hyung Wook Kim;Cheol Woong Choi;Dae Hwan Kang;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Jeong Seok Lee;Hyeong Jin Kim;Il Eok Jo;Yong Jae Lee - 通讯作者:
Yong Jae Lee
Sa1264 - Location Features of Early Gastric Cancer Treated with Endoscopic Submucosal Dissection
- DOI:
10.1016/s0016-5085(17)31162-9 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Dae Gon Ryu;Cheol Woong Choi;Dae Hwan Kang;Hyung Wook Kim;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Hyeong Jin Kim;Jeong Seok Lee;Il Eok Jo;Yong Jae Lee - 通讯作者:
Yong Jae Lee
The efficacy of serum CA125 and HE4 as a prognostic marker for the germline BRCA-affected patients in high-grade serous carcinoma (1175)
血清 CA125 和 HE4 作为生殖系 BRCA 影响的高级别浆液性癌患者预后标志物的疗效(1175)
- DOI:
10.1016/j.ygyno.2023.06.095 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.100
- 作者:
Young Joo Lee;Soo Min Hong;Yong Jae Lee;Jung-Yun Lee;Sang Wun Kim;Sunghoon Kim;Young Tae Kim;Eun Ji Nam - 通讯作者:
Eun Ji Nam
Yong Jae Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Jae Lee', 18)}}的其他基金
CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags
职业:弱监督视觉场景理解:结合图像和视频,超越语义标签
- 批准号:
2150012 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
- 批准号:
2204808 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags
职业:弱监督视觉场景理解:结合图像和视频,超越语义标签
- 批准号:
1751206 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
- 批准号:
1812850 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
- 批准号:
2345273 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
- 批准号:
MR/Z503514/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
- 批准号:
2339025 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Constraining the high-latitude ocean carbon cycle: Leveraging the Ocean Observatories Initiative (OOI) Global Arrays as marine biogeochemical time series
职业:限制高纬度海洋碳循环:利用海洋观测计划(OOI)全球阵列作为海洋生物地球化学时间序列
- 批准号:
2338450 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant














{{item.name}}会员




