CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags

职业:弱监督视觉场景理解:结合图像和视频,超越语义标签

基本信息

  • 批准号:
    2150012
  • 负责人:
  • 金额:
    $ 50.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

The internet provides an endless supply of images and videos, replete with weakly-annotated meta-data such as text tags, GPS coordinates, timestamps, or social media sentiments. This huge resource of visual data provides an opportunity to create scalable and powerful recognition algorithms that do not depend on expensive human annotations. The research component of this project develops novel visual scene understanding algorithms that can effectively learn from such weakly-annotated visual data. The main novelty is to combine both images and videos together. The developed algorithms could have broad impact in numerous fields including AI, security, and agricultural sciences. In addition to scientific impact, the project performs complementary educational and outreach activities. Specifically, it provides mentorship to high school, undergraduate, and graduate students, teaches new undergraduate and graduate computer vision courses that have been lacking at UC Davis, and organizes an international workshop on weakly-supervised visual scene understanding.This project develops novel algorithms to advance weakly-supervised visual scene understanding in two complementary ways: (1) learning jointly with both images and videos to take advantage of their complementarity, and (2) learning from weak supervisory signals that go beyond standard semantic tags such as timestamps, captions, and relative comparisons. Specifically, it investigates novel approaches to advance tasks like fully-automatic video object segmentation, weakly-supervised object detection, unsupervised learning of object categories, and mining of localized patterns in the image/video data that are correlated with the weak supervisory signal. Throughout, the project explores ways to understand and mitigate noise in the weak labels and to overcome the domain differences between images and videos.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
互联网提供了无穷无尽的图像和视频,充满了缺乏注释的元数据,如文本标签、GPS坐标、时间戳或社交媒体情绪。这种巨大的视觉数据资源为创建可扩展且功能强大的识别算法提供了机会,这些算法不依赖于昂贵的人工注释。该项目的研究部分开发了新的视觉场景理解算法,可以有效地从这种弱注释的视觉数据中学习。主要的新颖之处在于将图像和视频结合在一起。开发的算法可能会在人工智能、安全、农业科学等众多领域产生广泛影响。除了科学影响外,该项目还开展了补充的教育和推广活动。具体来说,它为高中生、本科生和研究生提供指导,教授加州大学戴维斯分校缺乏的新的本科生和研究生计算机视觉课程,并组织了一个关于弱监督视觉场景理解的国际研讨会。该项目开发了新的算法,以两种互补的方式推进弱监督视觉场景理解:(1)与图像和视频共同学习,以利用它们的互补性;(2)从弱监督信号中学习,这些信号超出了标准的语义标签,如时间戳、字幕和相对比较。具体来说,它研究了新的方法来推进任务,如全自动视频对象分割,弱监督对象检测,对象类别的无监督学习,以及挖掘与弱监督信号相关的图像/视频数据中的局部模式。在整个过程中,该项目探索了如何理解和减轻弱标签中的噪声,并克服图像和视频之间的域差异。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Two Dimensions of Worst-case Training and Their Integrated Effect for Out-of-domain Generalization
Generating Furry Cars: Disentangling Object Shape and Appearance across Multiple Domains
生成毛茸茸的汽车:跨多个领域理清对象形状和外观
Collaging Class-specific GANs for Semantic Image Synthesis
  • DOI:
    10.1109/iccv48922.2021.01415
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuheng Li;Yijun Li;Jingwan Lu;Eli Shechtman;Yong Jae Lee;Krishna Kumar Singh
  • 通讯作者:
    Yuheng Li;Yijun Li;Jingwan Lu;Eli Shechtman;Yong Jae Lee;Krishna Kumar Singh
Toward Learning Human-aligned Cross-domain Robust Models by Countering Misaligned Features
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haohan Wang;Zeyi Huang;Hanlin Zhang;Eric P. Xing
  • 通讯作者:
    Haohan Wang;Zeyi Huang;Hanlin Zhang;Eric P. Xing
ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models
  • DOI:
    10.48550/arxiv.2204.08790
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chunyuan Li-;Haotian Liu;Liunian Harold Li;Pengchuan Zhang;J. Aneja;Jianwei Yang;Ping Jin;Yong Jae Lee;Houdong Hu;Zicheng Liu;Jianfeng Gao
  • 通讯作者:
    Chunyuan Li-;Haotian Liu;Liunian Harold Li;Pengchuan Zhang;J. Aneja;Jianwei Yang;Ping Jin;Yong Jae Lee;Houdong Hu;Zicheng Liu;Jianfeng Gao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Jae Lee其他文献

Who Moved My Cheese? Automatic Annotation of Rodent Behaviors with Convolutional Neural Networks
谁动了我的奶酪?
Pancytopenia Associated with Hypopituitarism in an Acromegaly Patient: A Case Report and a Review of the Literature
肢端肥大症患者全血细胞减少症与垂体机能减退相关:病例报告及文献综述
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Koh;Yong Jae Lee;J. Kang;B. Choi;Y. Jeon;Sang Soo Kim;B. Kim;I. Kim
  • 通讯作者:
    I. Kim
Mo1763 - Fecal Calprotectin Versus Fecal Immunochemical Test for the Prediction of Mucosal Healing and Endoscopic Activity in Ulcerative Colitis
  • DOI:
    10.1016/s0016-5085(17)32683-5
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dae Gon Ryu;Hyung Wook Kim;Cheol Woong Choi;Dae Hwan Kang;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Jeong Seok Lee;Hyeong Jin Kim;Il Eok Jo;Yong Jae Lee
  • 通讯作者:
    Yong Jae Lee
Sa1264 - Location Features of Early Gastric Cancer Treated with Endoscopic Submucosal Dissection
  • DOI:
    10.1016/s0016-5085(17)31162-9
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dae Gon Ryu;Cheol Woong Choi;Dae Hwan Kang;Hyung Wook Kim;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Hyeong Jin Kim;Jeong Seok Lee;Il Eok Jo;Yong Jae Lee
  • 通讯作者:
    Yong Jae Lee
The efficacy of serum CA125 and HE4 as a prognostic marker for the germline BRCA-affected patients in high-grade serous carcinoma (1175)
血清 CA125 和 HE4 作为生殖系 BRCA 影响的高级别浆液性癌患者预后标志物的疗效(1175)
  • DOI:
    10.1016/j.ygyno.2023.06.095
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Young Joo Lee;Soo Min Hong;Yong Jae Lee;Jung-Yun Lee;Sang Wun Kim;Sunghoon Kim;Young Tae Kim;Eun Ji Nam
  • 通讯作者:
    Eun Ji Nam

Yong Jae Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Jae Lee', 18)}}的其他基金

RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
  • 批准号:
    2204808
  • 财政年份:
    2021
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Standard Grant
CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags
职业:弱监督视觉场景理解:结合图像和视频,超越语义标签
  • 批准号:
    1751206
  • 财政年份:
    2018
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Continuing Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
  • 批准号:
    1812850
  • 财政年份:
    2018
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Standard Grant
EAGER: Leveraging Synthetic Data for Visual Reasoning and Representation Learning with Minimal Human Supervision
EAGER:在最少的人类监督下利用合成数据进行视觉推理和表示学习
  • 批准号:
    1748387
  • 财政年份:
    2017
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Standard Grant

相似海外基金

Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
  • 批准号:
    22KJ0880
  • 财政年份:
    2023
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of deepometry for the supervised and weakly supervised learning of imaging data
用于成像数据监督和弱监督学习的深度测量的发展
  • 批准号:
    2748735
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Studentship
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
  • 批准号:
    RGPIN-2019-06018
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
  • 批准号:
    DGDND-2022-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
  • 批准号:
    2228990
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
  • 批准号:
    2228989
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Standard Grant
3D land cover mapping from satellite imagery by weakly supervised learning
通过弱监督学习根据卫星图像绘制 3D 土地覆盖图
  • 批准号:
    22H03609
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
  • 批准号:
    RGPIN-2022-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
  • 批准号:
    RGPIN-2018-05715
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: Weakly Supervised Graph Neural Networks
EAGER:弱监督图神经网络
  • 批准号:
    2137468
  • 财政年份:
    2021
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了