RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos

RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互

基本信息

  • 批准号:
    2204808
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Ubiquitous cameras, together with ever increasing computing resources, are dramatically changing the nature of visual data and their analysis. Cities are adopting networked camera systems for policing and intelligent resource allocation, and individuals are recording their lives using wearable devices. For these camera systems to become truly smart and useful for people, it is crucial that they understand interesting objects in the scene and detect ongoing activities/events, while jointly considering continuous 24/7 videos from multiple sources. Such object-level and activity-level awareness in hospitals, elderly homes, and public places would provide assistive and quality-of-life technology for disabled and elderly people, provide intelligent surveillance systems to prevent crimes, and allow smart usage of environmental resources. This project will investigate novel computer vision algorithms that combine 1st-person videos (from wearable cameras) and 3rd-person videos (from static environmental cameras) for joint recognition of humans, objects, and their interactions. The key idea is to combine the two views' complementary and unique advantages for joint visual scene understanding. To this end, it will create a new dataset, and develop new algorithms that learn to recognize objects jointly across the views, learn human-object and human-human relationships through the two views, and anonymize the videos to preserve users' privacies. The project will provide new algorithms that have the potential to benefit applications in smart environments, security, and quality-of-life assistive technologies. The project will also perform complementary educational and outreach activities that engage students in research and STEM.This project will develop novel algorithms that learn from joint 1st-person videos (from wearable cameras) and 3rd-person videos (from static environmental cameras) for joint recognition of humans, objects, and their interactions. The 1st-person view is ideal for object recognition, while the 3rd-person view is ideal for human activity recognition. Thus, this project will investigate unique solutions to challenging problems that would otherwise be difficult to overcome when analyzing each viewpoint in isolation. The main research directions will be: (1) creating a benchmark 1st-person and 3rd-person video dataset to investigate this new problem; and developing algorithms that (2) learn to establish object and human correspondences between the two views; (3) learn object-action relationships across the views; and (4) anonymize the visual data for privacy-preserving visual recognition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无处不在的摄像机,以及不断增加的计算资源,正在极大地改变视觉数据的性质及其分析。城市正在采用网络相机系统进行警务和智能资源分配,个人正在使用可穿戴设备记录生活。对于这些相机系统对人们来说真正聪明和有用,至关重要的是,他们了解场景中有趣的对象并检测正在进行的活动/事件,同时共同考虑来自多个来源的连续24/7视频。这种对象级别和活动水平的意识在医院,老年家庭和公共场所将为残疾人和老年人提供辅助和生活质量的技术,提供智能监视系统以防止犯罪,并允许对环境资源进行明智的使用。 该项目将研究结合第一人称视频(来自可穿戴摄像机)和第三人称视频(来自静态环境摄像机)的新型计算机视觉算法,以共同识别人类,对象及其相互作用。关键的想法是将两种视图的互补和独特优势结合在一起,以理解联合视觉场景。为此,它将创建一个新的数据集,并开发新的算法,这些算法学会通过两种观点来识别对象,学习人类对象和人类关系,并将视频匿名化以保留用户的私有性。该项目将提供新的算法,这些算法有可能使应用程序在智能环境,安全性和生活质量辅助技术中受益。该项目还将进行互补的教育和外展活动,使学生参与研究和STEM。该项目将开发新的算法,这些算法从联合的第一人称视频(来自可穿戴式相机)和第三人称视频(来自静态环境摄像机)(来自静态环境摄像机)学习,以共同识别人类,对象及其相互作用。第一人称视图是对象识别的理想选择,而第三人称视图是人类活动识别的理想选择。因此,该项目将调查针对挑战性问题的独特解决方案,这些解决方案在孤立分析每个观点时将难以克服。主要的研究指示将是:(1)创建基准的第一人称和第三人称视频数据集来研究这个新问题;并开发(2)学会在两种观点之间建立对象和人类对应的算法; (3)学习跨视图的对象关系关系; (4)匿名为保护隐私视觉识别的视觉数据。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seeing the Unseen: Predicting the First-Person Camera Wearer’s Location and Pose in Third-Person Scenes
The Two Dimensions of Worst-case Training and Their Integrated Effect for Out-of-domain Generalization
Toward Learning Human-aligned Cross-domain Robust Models by Countering Misaligned Features
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haohan Wang;Zeyi Huang;Hanlin Zhang;Eric P. Xing
  • 通讯作者:
    Haohan Wang;Zeyi Huang;Hanlin Zhang;Eric P. Xing
Equine Pain Behavior Classification via Self-Supervised Disentangled Pose Representation
Delving Deeper into Anti-Aliasing in ConvNets
  • DOI:
    10.1007/s11263-022-01672-y
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    19.5
  • 作者:
    Xueyan Zou;Fanyi Xiao;Zhiding Yu;Yong Jae Lee
  • 通讯作者:
    Xueyan Zou;Fanyi Xiao;Zhiding Yu;Yong Jae Lee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Jae Lee其他文献

Who Moved My Cheese? Automatic Annotation of Rodent Behaviors with Convolutional Neural Networks
谁动了我的奶酪?
Pancytopenia Associated with Hypopituitarism in an Acromegaly Patient: A Case Report and a Review of the Literature
肢端肥大症患者全血细胞减少症与垂体机能减退相关:病例报告及文献综述
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Koh;Yong Jae Lee;J. Kang;B. Choi;Y. Jeon;Sang Soo Kim;B. Kim;I. Kim
  • 通讯作者:
    I. Kim
Sa1264 - Location Features of Early Gastric Cancer Treated with Endoscopic Submucosal Dissection
  • DOI:
    10.1016/s0016-5085(17)31162-9
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dae Gon Ryu;Cheol Woong Choi;Dae Hwan Kang;Hyung Wook Kim;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Hyeong Jin Kim;Jeong Seok Lee;Il Eok Jo;Yong Jae Lee
  • 通讯作者:
    Yong Jae Lee
Mo1763 - Fecal Calprotectin Versus Fecal Immunochemical Test for the Prediction of Mucosal Healing and Endoscopic Activity in Ulcerative Colitis
  • DOI:
    10.1016/s0016-5085(17)32683-5
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dae Gon Ryu;Hyung Wook Kim;Cheol Woong Choi;Dae Hwan Kang;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Jeong Seok Lee;Hyeong Jin Kim;Il Eok Jo;Yong Jae Lee
  • 通讯作者:
    Yong Jae Lee
Ray-based Color Image Segmentation
基于光线的彩色图像分割

Yong Jae Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Jae Lee', 18)}}的其他基金

CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags
职业:弱监督视觉场景理解:结合图像和视频,超越语义标签
  • 批准号:
    2150012
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags
职业:弱监督视觉场景理解:结合图像和视频,超越语义标签
  • 批准号:
    1751206
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
  • 批准号:
    1812850
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Leveraging Synthetic Data for Visual Reasoning and Representation Learning with Minimal Human Supervision
EAGER:在最少的人类监督下利用合成数据进行视觉推理和表示学习
  • 批准号:
    1748387
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了