CAREER: Advances in Multi-scale Bayesian Inference and Learning on Massive Data
职业:多尺度贝叶斯推理和海量数据学习的进展
基本信息
- 批准号:1749789
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Massive data present unprecedented opportunities for advancing our understanding of various scientific and social phenomena. With sufficient data and the appropriate statistical tools, researchers can now hope to recover structures in the data that were once deemed too intricate to identify with traditional "small" data. Extracting complex hidden structures in massive data often requires flexible nonparametric methods; however, there are several fundamental challenges that make existing nonparametric methods impractical or inadequate. At the core of these challenges is a conflict between two essential aspects in big data analysis: (i) the need for flexible methodology for capturing complex features and (ii) the cost, both computational and statistical, associated with this additional flexibility. Effective resolution of this fundamental conflict requires new paradigms of nonparametric inference. The long-term research objective of this project is to develop inference paradigms, including theory, methods, algorithms, and software, for nonparametric inference and learning that effectively resolve this fundamental conflict. The research will lead to the development of statistical tools that meet urgent needs for scalable nonparametric data analysis in a wide range of fields, including biology, economics, astrophysics, chemistry, and information technology. The project will address the integration of research with educational activities through teaching and mentoring of undergraduate and graduate students, and outreach to students from local colleges.This project will develop and investigate a particularly promising paradigm, multi-scale divide-and-conquer, to address the fundamental conflict between flexibility and cost. Specific inference problems to be addressed cover a wide range of nonparametric inference and learning objectives, and can be organized into three research thrusts: (i) joint nonparametric modeling of multiple data generative processes; (ii) characterizing dependency between random variables/vectors; and (iii) response-domain ensemble supervised learning. Beyond addressing these specific objectives, the proposed research will introduce theoretical and computational devices for evaluating and improving the statistical and computational efficiency of multi-scale divide-and-conquer methods in general. The output of the research will include practical methods and algorithms for carrying out a variety of important nonparametric inference tasks on massive data, as well as general guiding principles for effective multi-scale statistical analysis. The research output will be disseminated through publications, presentations, and open-source software to the scientific community, and society at large.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海量数据为增进我们对各种科学和社会现象的理解提供了前所未有的机会。有了足够的数据和适当的统计工具,研究人员现在可以希望恢复数据中的结构,这些结构曾经被认为过于复杂,无法用传统的“小”数据来识别。从海量数据中提取复杂的隐藏结构往往需要灵活的非参数方法;然而,有几个基本的挑战,使现有的非参数方法不切实际或不充分。这些挑战的核心是大数据分析中两个基本方面之间的冲突:(i)需要灵活的方法来捕获复杂的特征;(ii)与这种额外的灵活性相关的计算和统计成本。有效地解决这一基本冲突需要新的非参数推理范式。该项目的长期研究目标是开发推理范式,包括理论、方法、算法和软件,用于有效解决这一基本冲突的非参数推理和学习。这项研究将导致统计工具的发展,以满足广泛领域中可扩展的非参数数据分析的迫切需求,包括生物学、经济学、天体物理学、化学和信息技术。该项目将通过对本科生和研究生的教学和指导,以及与当地大学学生的联系,解决研究与教育活动的结合问题。该项目将开发和研究一个特别有前途的范例,多尺度分而治之,以解决灵活性和成本之间的根本冲突。要解决的具体推理问题涵盖了广泛的非参数推理和学习目标,并且可以组织成三个研究重点:(i)多个数据生成过程的联合非参数建模;(ii)描述随机变量/向量之间的依赖关系;(三)响应域集成监督学习。除了解决这些具体目标之外,拟议的研究将引入理论和计算设备,以评估和提高一般多尺度分治方法的统计和计算效率。研究成果将包括在海量数据上执行各种重要的非参数推理任务的实用方法和算法,以及有效的多尺度统计分析的一般指导原则。研究成果将通过出版物、演讲和开源软件向科学界和整个社会传播。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CARP: Compression Through Adaptive Recursive Partitioning for Multi-Dimensional Images
CARP:通过多维图像的自适应递归分区进行压缩
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Liu, Rongjie;Li, Meng;Ma, Li
- 通讯作者:Ma, Li
A Bayesian hierarchical model for related densities by using Pólya trees
使用 Pólya 树计算相关密度的贝叶斯分层模型
- DOI:10.1111/rssb.12346
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Christensen, Jonathan;Ma, Li
- 通讯作者:Ma, Li
Learning Asymmetric and Local Features in Multi-Dimensional Data Through Wavelets With Recursive Partitioning
- DOI:10.1109/tpami.2021.3110403
- 发表时间:2017-11
- 期刊:
- 影响因子:23.6
- 作者:Meng Li;Li Ma
- 通讯作者:Meng Li;Li Ma
Bayesian Graphical Compositional Regression for Microbiome Data
- DOI:10.1080/01621459.2019.1647212
- 发表时间:2019-08-26
- 期刊:
- 影响因子:3.7
- 作者:Mao, Jialiang;Chen, Yuhan;Ma, Li
- 通讯作者:Ma, Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Ma其他文献
Real time velocity measurement with speckle modulation of a Q-resonator
通过 Q 谐振器的散斑调制进行实时速度测量
- DOI:
10.1016/j.optlastec.2012.08.016 - 发表时间:
2013-04 - 期刊:
- 影响因子:5
- 作者:
Daofu Han;Shui he;Liujing Fan;Li Ma;Huiqin Wang - 通讯作者:
Huiqin Wang
A Modified Peptide Stimulation Method for Efficient Amplification of Cytomegalovirus (CMV)-Specific CTLs
用于有效扩增巨细胞病毒 (CMV) 特异性 CTL 的改良肽刺激方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:24.1
- 作者:
Guang;Li Ma;Q. Wen;Wei Luo;Ming;Xiao - 通讯作者:
Xiao
A machine learning-based underwater noise classification method
基于机器学习的水下噪声分类方法
- DOI:
10.1016/j.apacoust.2021.108333 - 发表时间:
2021-12 - 期刊:
- 影响因子:3.4
- 作者:
Guoli Song;Xinyi Guo;Wenbo Wang;Qunyan Ren;Jun Li;Li Ma - 通讯作者:
Li Ma
Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO3-based antiferroelectric ceramics
银化学计量工程:提高AgNbO3基反铁电陶瓷储能密度的替代方法
- DOI:
10.1557/s43578-020-00018-z - 发表时间:
2021-01 - 期刊:
- 影响因子:2.7
- 作者:
Nengneng Luo;Xinya Tang;Kai Han;Li Ma;Zhenpei Chen;Xiyong Chen;Qin Feng;Changzheng Hu;Yuezhou Wei;Toyohisa Fujita - 通讯作者:
Toyohisa Fujita
Glutathione-functionalized Mn:ZnS/ZnO core/shell quantum dots as potential time-resolved FRET bioprobes
谷胱甘肽功能化 Mn:ZnS/ZnO 核/壳量子点作为潜在的时间分辨 FRET 生物探针
- DOI:
10.1039/c3ra45491f - 发表时间:
2014-01 - 期刊:
- 影响因子:3.9
- 作者:
Zhu Dong;Wei Li;Li Ma;Yu Lei - 通讯作者:
Yu Lei
Li Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Ma', 18)}}的其他基金
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152999 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Advances in Bayesian Nonparametric Methods for Jointly Modeling Multiple Data Sets
联合建模多个数据集的贝叶斯非参数方法的进展
- 批准号:
2013930 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
ISBA 2020: 15th World Meeting of the International Society for Bayesian Analysis -- June 29-July 3, 2020
ISBA 2020:国际贝叶斯分析学会第十五届世界会议——2020年6月29日至7月3日
- 批准号:
1938935 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Graphical Multi-Resolution Scanning for Cross-Sample Variation
针对跨样本变化的图形多分辨率扫描
- 批准号:
1612889 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Bayesian Recursive Partitioning and Inference on the Structure of High-Dimensional Distributions
高维分布结构的贝叶斯递归划分和推理
- 批准号:
1309057 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
- 批准号:
2349452 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
- 批准号:
2340176 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant














{{item.name}}会员




