CAREER: Advances in Multi-scale Bayesian Inference and Learning on Massive Data
职业:多尺度贝叶斯推理和海量数据学习的进展
基本信息
- 批准号:1749789
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Massive data present unprecedented opportunities for advancing our understanding of various scientific and social phenomena. With sufficient data and the appropriate statistical tools, researchers can now hope to recover structures in the data that were once deemed too intricate to identify with traditional "small" data. Extracting complex hidden structures in massive data often requires flexible nonparametric methods; however, there are several fundamental challenges that make existing nonparametric methods impractical or inadequate. At the core of these challenges is a conflict between two essential aspects in big data analysis: (i) the need for flexible methodology for capturing complex features and (ii) the cost, both computational and statistical, associated with this additional flexibility. Effective resolution of this fundamental conflict requires new paradigms of nonparametric inference. The long-term research objective of this project is to develop inference paradigms, including theory, methods, algorithms, and software, for nonparametric inference and learning that effectively resolve this fundamental conflict. The research will lead to the development of statistical tools that meet urgent needs for scalable nonparametric data analysis in a wide range of fields, including biology, economics, astrophysics, chemistry, and information technology. The project will address the integration of research with educational activities through teaching and mentoring of undergraduate and graduate students, and outreach to students from local colleges.This project will develop and investigate a particularly promising paradigm, multi-scale divide-and-conquer, to address the fundamental conflict between flexibility and cost. Specific inference problems to be addressed cover a wide range of nonparametric inference and learning objectives, and can be organized into three research thrusts: (i) joint nonparametric modeling of multiple data generative processes; (ii) characterizing dependency between random variables/vectors; and (iii) response-domain ensemble supervised learning. Beyond addressing these specific objectives, the proposed research will introduce theoretical and computational devices for evaluating and improving the statistical and computational efficiency of multi-scale divide-and-conquer methods in general. The output of the research will include practical methods and algorithms for carrying out a variety of important nonparametric inference tasks on massive data, as well as general guiding principles for effective multi-scale statistical analysis. The research output will be disseminated through publications, presentations, and open-source software to the scientific community, and society at large.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量数据提供了前所未有的机会,可以促进我们对各种科学和社会现象的理解。有了足够的数据和适当的统计工具,研究人员现在可以希望在曾经被认为过于复杂而无法识别传统“小”数据的数据中恢复结构。 在大量数据中提取复杂的隐藏结构通常需要灵活的非参数方法。但是,存在一些基本挑战,使现有的非参数方法不切实际或不足。 这些挑战的核心是大数据分析中的两个基本方面之间的冲突:(i)需要灵活的方法来捕获复杂的特征,以及(ii)计算和统计的成本,与这种额外的灵活性有关。有效解决这一基本冲突需要非参数推断的新范式。该项目的长期研究目标是开发推理范例,包括理论,方法,算法和软件,用于非参数推断和学习,从而有效地解决了这一基本冲突。 这项研究将导致开发统计工具,这些工具满足迫切需求,以在包括生物学,经济学,天体物理学,化学和信息技术在内的广泛领域中可扩展的非参数数据分析。该项目将通过教学和指导本科生和研究生的教学和指导来解决研究与教育活动的融合,并向当地大学的学生推广。该项目将开发和调查特别有希望的范式,多尺度的分歧和互动,以解决灵活性和成本之间的基本冲突。 要解决的特定推理问题涵盖了广泛的非参数推断和学习目标,并且可以组织为三个研究推力:(i)多个数据生成过程的联合非参数建模; (ii)表征随机变量/向量之间的依赖性; (iii)反应域合奏监督学习。除了解决这些特定目标之外,拟议的研究还将引入理论和计算设备,以评估和提高多规模分割和混合方法的统计和计算效率。该研究的输出将包括实用方法和算法,用于在大规模数据上执行各种重要的非参数推理任务,以及用于有效多规模统计分析的一般指导原则。研究成果将通过出版物,演讲和开源软件传播给科学界,以及整个社会。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来支持的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CARP: Compression Through Adaptive Recursive Partitioning for Multi-Dimensional Images
CARP:通过多维图像的自适应递归分区进行压缩
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Liu, Rongjie;Li, Meng;Ma, Li
- 通讯作者:Ma, Li
A Bayesian hierarchical model for related densities by using Pólya trees
使用 Pólya 树计算相关密度的贝叶斯分层模型
- DOI:10.1111/rssb.12346
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Christensen, Jonathan;Ma, Li
- 通讯作者:Ma, Li
Learning Asymmetric and Local Features in Multi-Dimensional Data Through Wavelets With Recursive Partitioning
- DOI:10.1109/tpami.2021.3110403
- 发表时间:2017-11
- 期刊:
- 影响因子:23.6
- 作者:Meng Li;Li Ma
- 通讯作者:Meng Li;Li Ma
Bayesian Graphical Compositional Regression for Microbiome Data
- DOI:10.1080/01621459.2019.1647212
- 发表时间:2019-08-26
- 期刊:
- 影响因子:3.7
- 作者:Mao, Jialiang;Chen, Yuhan;Ma, Li
- 通讯作者:Ma, Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Ma其他文献
Ultrasmall volume molecular isothermal amplification in microfluidic chip with advanced surface processing
采用先进表面处理的微流控芯片中的超小体积分子等温放大
- DOI:
10.1088/1742-6596/277/1/012013 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Guoliang Huang;Li Ma;Xiaoyong Yang;Xu Yang - 通讯作者:
Xu Yang
Synergic remediation of polycyclic aromatic hydrocarbon-contaminated soil by a combined system of persulfate oxidation activated by biochar and phytoremediation with basil: A compatible, robust, and sustainable approach
通过生物炭激活的过硫酸盐氧化和罗勒植物修复的组合系统对多环芳烃污染的土壤进行协同修复:一种兼容、稳健和可持续的方法
- DOI:
10.1016/j.cej.2022.139502 - 发表时间:
2022-09 - 期刊:
- 影响因子:15.1
- 作者:
Xiaoying Li;Qiren Tan;Ying Zhou;Qincheng Cehn;Peng Sun;Guoqing Shen;Li Ma - 通讯作者:
Li Ma
A Damage-Tolerant Task Assignment Algorithm for UAV Swarm in Confrontational Environments
对抗环境下无人机群的损伤容忍任务分配算法
- DOI:
10.1155/2020/8878136 - 发表时间:
2020-08 - 期刊:
- 影响因子:1.4
- 作者:
Chao Chen;Weidong Bao;Tong Men;Wen Zhou;Daqian Liu;Li Ma - 通讯作者:
Li Ma
Tracking of Dance Limb Movement Trajectory Based on Kinect Bone Data
- DOI:
10.1145/3482632.3484041 - 发表时间:
2021-09 - 期刊:
- 影响因子:0
- 作者:
Li Ma - 通讯作者:
Li Ma
Finite time blowup and global solutions of Euler type equations in matrix geometry
矩阵几何中欧拉型方程的有限时间爆炸和全局解
- DOI:
10.1063/1.5037987 - 发表时间:
2018-07 - 期刊:
- 影响因子:1.3
- 作者:
Jiaojiao Li;Li Ma - 通讯作者:
Li Ma
Li Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Ma', 18)}}的其他基金
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152999 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Advances in Bayesian Nonparametric Methods for Jointly Modeling Multiple Data Sets
联合建模多个数据集的贝叶斯非参数方法的进展
- 批准号:
2013930 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
ISBA 2020: 15th World Meeting of the International Society for Bayesian Analysis -- June 29-July 3, 2020
ISBA 2020:国际贝叶斯分析学会第十五届世界会议——2020年6月29日至7月3日
- 批准号:
1938935 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Graphical Multi-Resolution Scanning for Cross-Sample Variation
针对跨样本变化的图形多分辨率扫描
- 批准号:
1612889 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Bayesian Recursive Partitioning and Inference on the Structure of High-Dimensional Distributions
高维分布结构的贝叶斯递归划分和推理
- 批准号:
1309057 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
企业数字化转型驱动减污降碳协同的机理与政策优化研究:基于偏向性技术进步的视角
- 批准号:72304145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
能源偏向型技术进步对企业绿色创新的影响及作用机理研究:创新要素配置视角
- 批准号:72304144
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内生技术进步不确定性下碳移除技术采纳优化研究
- 批准号:72304186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
工业技术进步方向与共同富裕实现:理论机制、效应识别及政策引导
- 批准号:72373072
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于刚柔感知融合的水下机器人波动推进步态与时变流场自匹配研究
- 批准号:52371337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Nurse-Led Interventions in Pediatric Critical Care: Training in Pediatric Sleep Health, Delirium, and Multi-Site Research
护士主导的儿科重症监护干预措施:儿科睡眠健康、谵妄和多中心研究培训
- 批准号:
10751813 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
2023 Multi-Drug Efflux Systems: Targeting the Mechanisms and Regulation of Multi-Drug Transporters for Advancing Health during a Pandemic GRC/GRS
2023 多药物外排系统:针对多药物转运蛋白的机制和调节,以在大流行 GRC/GRS 期间促进健康
- 批准号:
10614335 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mentoring Multidisciplinary Patient-Oriented Research in TB, HIV, and Global Health
指导结核病、艾滋病毒和全球健康领域的多学科、以患者为导向的研究
- 批准号:
10619230 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mentoring and Research in Patient-Oriented Cardiovascular Pharmacoepidemiology
以患者为中心的心血管药物流行病学的指导和研究
- 批准号:
10281638 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
South Carolina COBRE in Oxidants, Redox Balance and Stress Signaling
南卡罗来纳州 COBRE 在氧化剂、氧化还原平衡和压力信号方面的作用
- 批准号:
10798895 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别: