CAREER: Structured Output Models of Recommendations, Activities, and Behavior

职业:建议、活动和行为的结构化输出模型

基本信息

  • 批准号:
    1750063
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This project will investigate predictive models of human behavior that are capable of estimating rich, structured outputs. Such predictive models underlie many of the most important computing systems in science and industry, ranging from e-Commerce to personalized healthcare. While existing models (i.e., "recommender systems") typcially focus on simple predictions (a user's next click or star rating, a patient's next symptom, etc.), this project shall develop models capable of generating outputs in the form of text, images, and sequences. These new modalities of predictive modeling will allow personalized recommender systems to be adapted to answer complex questions, predict nuanced reactions, and even to design new content that elicits a certain reaction.The project's technical approach combines ideas from personalized recommender systems with newly-emerging techniques for generative modeling. Ideas from recommender systems can be used to handle issues like personalization, subjectivity, or other variance that arises due to differences between individuals; ideas from generative modeling allow complex outputs (text, images, sequences) to be generated. This technical contribution can be viewed either as a new form of recommender system capable of handling more complex queries, or alternately as a new suite of generative modeling approaches that can account for variance between individuals. This project will have impact to applications where complex, high-dimensional data meets issues of personalization and subjectivity. Specific examples to be investigated include online activity traces, e-Commerce, and personalized health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究人类行为的预测模型,这些模型能够估计丰富的结构化输出。这种预测模型是科学和工业中许多最重要的计算系统的基础,从电子商务到个性化医疗保健。虽然现有的模型(即,“推荐系统”)通常集中于简单的预测(用户的下一次点击或星星评级、患者的下一个症状等),本项目将开发能够以文本、图像和序列形式生成输出的模型。这些预测建模的新模式将使个性化推荐系统能够适应回答复杂的问题,预测细微的反应,甚至设计新的内容,消除某种反应。该项目的技术方法将个性化推荐系统的思想与新兴的生成建模技术相结合。来自推荐系统的想法可以用来处理个性化、主观性或其他由于个体之间的差异而产生的差异等问题;来自生成建模的想法可以生成复杂的输出(文本、图像、序列)。这种技术贡献可以被看作是一种新形式的推荐系统,能够处理更复杂的查询,或者作为一套新的生成建模方法,可以考虑个人之间的差异。该项目将对复杂的高维数据满足个性化和主观性问题的应用程序产生影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BERT Learns to Teach: Knowledge Distillation with Meta Learning
  • DOI:
    10.18653/v1/2022.acl-long.485
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wangchunshu Zhou;Canwen Xu;Julian McAuley
  • 通讯作者:
    Wangchunshu Zhou;Canwen Xu;Julian McAuley
Knowledge-Grounded Self-Rationalization via Extractive and Natural Language Explanations
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bodhisattwa Prasad Majumder;Oana-Maria Camburu;Thomas Lukasiewicz;Julian McAuley
  • 通讯作者:
    Bodhisattwa Prasad Majumder;Oana-Maria Camburu;Thomas Lukasiewicz;Julian McAuley
InforMask: Unsupervised Informative Masking for Language Model Pretraining
  • DOI:
    10.48550/arxiv.2210.11771
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nafis Sadeq;Canwen Xu;Julian McAuley
  • 通讯作者:
    Nafis Sadeq;Canwen Xu;Julian McAuley
Controlling Bias Exposure for Fair Interpretable Predictions
控制偏差暴露以实现公平可解释的预测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zexue He, Yu Wang
  • 通讯作者:
    Zexue He, Yu Wang
LaPraDoR: Unsupervised Pretrained Dense Retriever for Zero-Shot Text Retrieval
  • DOI:
    10.48550/arxiv.2203.06169
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Canwen Xu;Daya Guo;Nan Duan;Julian McAuley
  • 通讯作者:
    Canwen Xu;Daya Guo;Nan Duan;Julian McAuley
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julian McAuley其他文献

Cognitive Bias in High-Stakes Decision-Making with LLMs
法学硕士高风险决策中的认知偏差
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Echterhoff;Yao Liu;Abeer Alessa;Julian McAuley;Zexue He
  • 通讯作者:
    Zexue He
The First Workshop on Personalized Generative AI @ CIKM 2023: Personalization Meets Large Language Models
第一届个性化生成人工智能研讨会@CIKM 2023:个性化遇见大型语言模型
Robust Near-Isometric Matching via Structured Learning of Graphical Models
通过图形模型的结构化学习实现稳健的近等距匹配
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julian McAuley;T. Caetano;Alex Smola
  • 通讯作者:
    Alex Smola
Predicting Embryo Morphokinetics in Videos with Late Fusion Nets & Dynamic Decoders
使用后期融合网络预测视频中的胚胎形态动力学
Mitigating Hallucination in Fictional Character Role-Play
减轻虚构人物角色扮演中的幻觉
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nafis Sadeq;Zhouhang Xie;Byungkyu Kang;Prarit Lamba;Xiang Gao;Julian McAuley
  • 通讯作者:
    Julian McAuley

Julian McAuley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computing over Compressed Graph-Structured Data
压缩图结构数据的计算
  • 批准号:
    EP/X039447/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Nano-structured RC Networks - A Pathway To Artificial Skin
纳米结构 RC 网络 - 人造皮肤的途径
  • 批准号:
    EP/Y002172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
  • 批准号:
    24K20845
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Revolutionizing Tactile AI: Developing a Soft, Liquid-Structured, High Density, 3-Axis Tactile Sensor
彻底改变触觉 AI:开发柔软、液体结构、高密度、3 轴触觉传感器
  • 批准号:
    24K20874
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy
职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化
  • 批准号:
    2338558
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
  • 批准号:
    2338880
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了