CAREER: Equilibrium Computation and Other Total Search Problems
职业:平衡计算和其他总搜索问题
基本信息
- 批准号:1750436
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nash and market equilibria are two of the most fundamental solution concepts in computational game theory and economics, respectively. These concepts are applicable to many long-standing open questions in diverse fields such as cryptography, topology, and verification. Even though we have a fair understanding of these by now, many fundamental questions still remain unresolved in areas such as efficient approximation algorithms, beyond-worst-case analysis, and the relations between the sub-classes and the problems therein. This project aims to explore these questions by bringing together tools from equilibrium computation, sum-of-squares analysis, robust analysis, and other areas. The project is expected to provide efficient and robust algorithms for a large class of such problems, as well as to develop tools to obtain connections among problems from disparate fields and thereby bring insights into their complexity. The former will have a positive practical impact due to numerous applications in areas such as social network analysis and resource allocation. The project will involve and train graduate and undergraduate students at various levels of the project, integrate the findings with teaching, and make lecture notes and other material freely available online. The project will also reach students from underrepresented groups through mentoring workshops and the opportunities provided by initiatives at the University of Illinois at Urbana-Champaign.The three main research goals of this project are: (i) understand the recent exponential time hypothesis for the class PPAD through the complexity of constant-approximate Nash equilibria, (ii) understand the relative complexity of problems in the class CLS coming from topology, verification, cryptography, etc., and (iii) develop beyond-worst-case analysis to explain the existence of simple and empirically fast algorithms for computing equilibria. These problems will involve developing novel tools for approximation and for beyond-worst-case analysis. Furthermore, new reduction techniques will need to be developed to relate the open problems from diverse fields and/or to prove hardness of approximation. The project will approach these by building on recent work on equilibrium computation and complexity, using tools from the sum-of-squares method, recent smoothed analysis techniques, and advances in proving lower bounds. Tools developed in the process will contribute to the burgeoning literature in these domains and open up avenues for further exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳什均衡和市场均衡分别是计算博弈论和经济学中最基本的两个解决方案概念。这些概念适用于密码学、拓扑和验证等不同领域中许多长期存在的开放性问题。尽管我们现在对这些问题有了相当的了解,但在诸如有效的近似算法,超越最坏情况分析,以及子类与其中的问题之间的关系等领域,许多基本问题仍然没有解决。本项目旨在通过汇集平衡计算、平方和分析、鲁棒分析和其他领域的工具来探索这些问题。该项目有望为大量此类问题提供高效且稳健的算法,并开发工具来获取来自不同领域的问题之间的联系,从而深入了解其复杂性。前者由于在社会网络分析和资源分配等领域的大量应用,将会产生积极的实际影响。该项目将涉及和培养不同层次的研究生和本科生,将研究结果与教学相结合,并将课堂笔记和其他材料免费在线提供。该项目还将通过指导研讨会和伊利诺伊大学厄巴纳-香槟分校的倡议提供的机会,接触到代表性不足的群体的学生。该项目的三个主要研究目标是:(i)通过常数近似纳什均衡的复杂性来理解最近PPAD类的指数时间假设,(ii)理解CLS类问题的相对复杂性,这些问题来自拓扑,验证,密密学等,以及(iii)发展超越最坏情况的分析来解释计算均衡的简单和经验快速算法的存在。这些问题将涉及开发新的逼近和超越最坏情况分析工具。此外,需要开发新的约简技术来将不同领域的开放问题联系起来和/或证明近似的硬度。该项目将通过建立在平衡计算和复杂性的最新工作基础上,使用平方和方法的工具,最新的平滑分析技术,以及证明下界的进展来解决这些问题。在此过程中开发的工具将有助于这些领域的新兴文献,并为进一步探索开辟道路。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Social Welfare and Profit Maximization from Revealed Preference
显示偏好的社会福利和利润最大化
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Ji, Ziwei;Mehta, Ruta;Telgarsky, Matus
- 通讯作者:Telgarsky, Matus
Multiclass Performance Metric Elicitation
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:G. Hiranandani;Shant Boodaghians;R. Mehta;Oluwasanmi Koyejo
- 通讯作者:G. Hiranandani;Shant Boodaghians;R. Mehta;Oluwasanmi Koyejo
Improving EFX Guarantees through Rainbow Cycle Number
通过 Rainbow Cycle Number 改善 EFX 保证
- DOI:10.1145/3465456.3467605
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chaudhury, Bhaskar Ray;Garg, Jugal;Mehlhorn, Kurt;Mehta, Ruta;Misra, Pranabendu
- 通讯作者:Misra, Pranabendu
Sum-of-squares meets nash: lower bounds for finding any equilibrium
平方和满足纳什:找到任何均衡的下界
- DOI:10.1145/3188745.3188892
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kothari, Pravesh K.;Mehta, Ruta
- 通讯作者:Mehta, Ruta
Universal Growth in Production Economies
生产经济体普遍增长
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Branzei, Simina and
- 通讯作者:Branzei, Simina and
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruta Mehta其他文献
Approximating APS under Submodular and XOS valuations with Binary Marginals
使用二元边际近似子模和 XOS 估值下的 APS
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Pooja Kulkarni;Rucha Kulkarni;Ruta Mehta - 通讯作者:
Ruta Mehta
On the structure of envy-free orientations on graphs
关于图上无嫉妒方向的结构
- DOI:
10.48550/arxiv.2404.13527 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jinghan A Zeng;Ruta Mehta - 通讯作者:
Ruta Mehta
On the existence of EFX under picky or non-differentiative agents
论挑剔或无差别代理下 EFX 的存在
- DOI:
10.5555/3635637.3663218 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Maya Viswanathan;Ruta Mehta - 通讯作者:
Ruta Mehta
Ruta Mehta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruta Mehta', 18)}}的其他基金
AF:RI:Small: Fairness in allocation and machine learning problems: algorithms and solution concepts
AF:RI:Small:分配公平性和机器学习问题:算法和解决方案概念
- 批准号:
2334461 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2018 AGT Mentoring Workshop Co-Located with Economics and Computation (EC)
NSF 学生旅费资助 2018 年与经济学与计算 (EC) 同期举办的 AGT 指导研讨会
- 批准号:
1833617 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似海外基金
AF: Small: Equilibrium Computation and Multi-Agent Learning in High-Dimensional Games
AF:小:高维游戏中的平衡计算和多智能体学习
- 批准号:
2342642 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
- 批准号:
2231863 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
- 批准号:
2309799 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
- 批准号:
2309798 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
- 批准号:
2309800 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
EAGER-QAC-QCH: NSF-BSF: Quantum Computation as a Non-Equilibrium Dynamical Many-Body System
EAGER-QAC-QCH:NSF-BSF:量子计算作为非平衡动态多体系统
- 批准号:
2037654 - 财政年份:2020
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Systematization of calculation methods of three dimensional open channel flows based on the bottom velocity computation method and new developments of non-equilibrium sediment dynamics
基于底速计算方法的三维明渠水流计算方法体系化及非平衡沉积动力学新进展
- 批准号:
18H01546 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
AF: Medium: New Frontiers in Equilibrium Computation
AF:中:平衡计算的新领域
- 批准号:
1703925 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
RII Track-4: Big Data and Massive Computation Approaches to Non-Equilibrium Dynamics of Strongly Correlated Materials
RII Track-4:强相关材料非平衡动力学的大数据和大规模计算方法
- 批准号:
1738698 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Bottom velocity computation method around structures and local scour calculation method coupled with the non-equilibrium sediment transport model
建筑物周围底部速度计算方法及结合非平衡输沙模型的局部冲刷计算方法
- 批准号:
23560611 - 财政年份:2011
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)