CAREER: Leveraging Sparsity in Massively Distributed Optimization
职业:在大规模分布式优化中利用稀疏性
基本信息
- 批准号:1750539
- 负责人:
- 金额:$ 45.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project develops novel parallel optimization techniques based on the Frank-Wolfe algorithm, enabling the massive parallelization, at an unprecedented scale, of several problems of key significance to computer science, engineering, and operations research. Massively parallelizing such problems can have a significant practical impact on both academia and industry. Using Apache Spark as a development platform, algorithms developed by the project can be implemented, deployed and evaluated over hundreds of machines and thousands of CPUs. The Massachusetts Green High Performance Computing Center (MGHPCC) as well as cloud services, such as Amazon Web Services and the Google Cloud Platform, are leveraged for this deployment, demonstrating both the scalability of developed algorithms as well as their applicability to commercial cluster environments. Educational activities are closely integrated with this research agenda, including a course developed by the principal investigator using MGHPCC as a computing platform, and outreach activities developed jointly with Northeastern University's Center for STEM Education.This research advances our knowledge and understanding of the formal conditions under which problems can be massively parallelized via map-reduce implementations of the Frank-Wolfe algorithm. The project leverages sparsity properties that optimization problems exhibit under Frank-Wolfe, thereby enabling their parallelization via map-reduce operations. Beyond tailored, problem-specific implementations, the project identifies formal, structural properties of problems (or, classes of problems) under which such massive parallelization via map-reduce is possible. The use of Frank-Wolfe as a building block for parallelization, both in convex optimization but also in submodular maximization settings, is transformative. In the latter case, it amounts to a non-combinatorial approach for parallelization, attaining the same approximation guarantee as serial algorithms.
该项目开发了基于Frank-Wolfe算法的新型并行优化技术,使计算机科学,工程和运筹学中具有关键意义的几个问题能够以前所未有的规模大规模并行化。大规模并行处理这些问题可以对学术界和工业界产生重大的实际影响。使用Apache Spark作为开发平台,该项目开发的算法可以在数百台机器和数千个CPU上实现,部署和评估。该部署利用了马萨诸塞州绿色高性能计算中心(MGHPCC)以及Amazon Web Services和Google Cloud Platform等云服务,展示了所开发算法的可扩展性及其对商业集群环境的适用性。教育活动与这项研究议程紧密结合,包括由首席研究员使用MGHPCC作为计算平台开发的课程,以及与东北大学STEM教育中心联合开发的推广活动。这项研究推进了我们对问题可以通过Frank-Wolfe算法的映射缩减实现大规模并行化的形式条件的知识和理解。该项目利用了在Frank-Wolfe下优化问题表现出的稀疏性属性,从而通过映射缩减操作实现了并行化。除了量身定制的特定问题的实现之外,该项目还确定了问题(或问题类)的形式化结构属性,在这些属性下,通过map-reduce进行大规模并行化是可能的。在凸优化和次模最大化设置中,使用Frank-Wolfe作为并行化的构建块是变革性的。在后一种情况下,它相当于并行化的非组合方法,获得与串行算法相同的近似保证。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rate Allocation and Content Placement in Cache Networks
缓存网络中的速率分配和内容放置
- DOI:10.1109/infocom42981.2021.9488715
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kamran, Khashayar;Moharrer, Armin;Ioannidis, Stratis;Yeh, Edmund
- 通讯作者:Yeh, Edmund
AlignGraph: A Group of Generative Models for Graphs
- DOI:10.48550/arxiv.2301.11273
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Kimia Shayestehfard;Dana Brooks;Stratis Ioannidis
- 通讯作者:Kimia Shayestehfard;Dana Brooks;Stratis Ioannidis
Jointly Optimal Routing and Caching with Bounded Link Capacities
具有有限链路容量的联合最优路由和缓存
- DOI:10.1109/icc45041.2023.10279235
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Yuanyuan;Zhang, Yuchao;Ioannidis, Stratis;Crowcroft, Jon
- 通讯作者:Crowcroft, Jon
Massively Distributed Graph Distances
- DOI:10.1109/tsipn.2020.3022003
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Armin Moharrer;Jasmin Gao;Shikun Wang;José Bento;Stratis Ioannidis
- 通讯作者:Armin Moharrer;Jasmin Gao;Shikun Wang;José Bento;Stratis Ioannidis
Variational Inference from Ranked Samples with Features
从具有特征的排序样本进行变分推断
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Guo, Y.;Dy, J.;D., Kalpathy-Cramer;Ostmo, S.;Campbell, J.P.;Chiang, M.F.;Ioannidis, S.
- 通讯作者:Ioannidis, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stratis Ioannidis其他文献
Content Search through Comparisons
通过比较进行内容搜索
- DOI:
10.1007/978-3-642-22012-8_48 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Amin Karbasi;Stratis Ioannidis;L. Massoulié - 通讯作者:
L. Massoulié
Truthful Linear Regression
真实的线性回归
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Rachel Cummings;Stratis Ioannidis;Katrina Ligett - 通讯作者:
Katrina Ligett
Automated diagnosis of plus disease in retinopathy of prematurity using deep learning
使用深度学习自动诊断早产儿视网膜病变
- DOI:
10.1016/j.jaapos.2018.07.036 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
J. Campbell;James A. Brown;R. Chan;Jennifer G. Dy;Stratis Ioannidis;Deniz Erdoğmuş;Jayashree Kalpathy;M. Chiang - 通讯作者:
M. Chiang
Distributed caching over heterogeneous mobile networks
- DOI:
10.1007/s11134-012-9297-7 - 发表时间:
2012-04-20 - 期刊:
- 影响因子:0.700
- 作者:
Stratis Ioannidis;Laurent Massoulié;Augustin Chaintreau - 通讯作者:
Augustin Chaintreau
$ ext{Omni-CNN}$: A Modality-Agnostic Neural Network for mmWave Beam Selection
$ ext{Omni-CNN}$:用于毫米波波束选择的模态不可知神经网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.8
- 作者:
Batool Salehi;Debashri Roy;T. Jian;Chris Dick;Stratis Ioannidis;Kaushik R. Chowdhury - 通讯作者:
Kaushik R. Chowdhury
Stratis Ioannidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stratis Ioannidis', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Data-Centric Networks for Distributed Learning
合作研究:CNS 核心:媒介:用于分布式学习的以数据为中心的网络
- 批准号:
2107062 - 财政年份:2021
- 资助金额:
$ 45.87万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
- 批准号:
2013756 - 财政年份:2020
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
RTML: Large: Efficient and Adaptive Real-Time Learning for Next Generation Wireless Systems
RTML:大型:下一代无线系统的高效、自适应实时学习
- 批准号:
1937500 - 财政年份:2019
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Design and Computation of Scalable Graph Distances in Metric Spaces: A Unified Multiscale Interpretable Perspective
BIGDATA:F:协作研究:度量空间中可扩展图距离的设计和计算:统一的多尺度可解释视角
- 批准号:
1741197 - 财政年份:2017
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
NeTS: Small: Caching Networks with Optimality Guarantees
NetS:小型:具有最优性保证的缓存网络
- 批准号:
1718355 - 财政年份:2017
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Massively Scalable Secure Computation Infrastructure Using FPGAs
SaTC:CORE:小型:使用 FPGA 的大规模可扩展安全计算基础设施
- 批准号:
1717213 - 财政年份:2017
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Assistive Integrative Support Tool for Retinopathy of Prematurity
SCH:INT:合作研究:早产儿视网膜病变辅助综合支持工具
- 批准号:
1622536 - 财政年份:2016
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Continuing Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
- 批准号:
2345273 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Standard Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Research Grant
Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
- 批准号:
MR/Z503514/1 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Research Grant
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
- 批准号:
2339025 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Continuing Grant
CAREER: Constraining the high-latitude ocean carbon cycle: Leveraging the Ocean Observatories Initiative (OOI) Global Arrays as marine biogeochemical time series
职业:限制高纬度海洋碳循环:利用海洋观测计划(OOI)全球阵列作为海洋生物地球化学时间序列
- 批准号:
2338450 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Continuing Grant














{{item.name}}会员




