Collaborative Research: CNS Core: Medium: Data-Centric Networks for Distributed Learning

合作研究:CNS 核心:媒介:用于分布式学习的以数据为中心的网络

基本信息

  • 批准号:
    2107062
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Machine learning algorithms have revolutionized many fields by giving them the ability to use historical data for making predictions or detecting patterns that can then be used to automate various tasks and create new applications for users. The data that many of today’s machine learning applications require, however, is often collected by a network of multiple sensors. For example, data from environmental sensors in smart cities can be used to predict air pollution or traffic at different locations in the city. Analyzing this data with machine learning algorithms then requires these devices to cooperate with each other, exchanging data and models. This project designs mechanisms for devices to efficiently cooperate.Distributing machine learning algorithms is particularly challenging when devices are heterogeneously resource-constrained, e.g., with varying compute, power, or bandwidth limitations, as is often the case in today’s networks. Traditional learning algorithms either bring all data to a single location for analysis, or entirely distribute the learning algorithm to the data sources. A more flexible approach that instead intelligently brings data to the computing components of the learning algorithms, and conversely brings computing to data sources, can better harness these devices’ resources, but raises a natural question of how data and model components should be moved through the network. This project develops a data-centric approach to distributed learning that utilizes advances in Named Data Networking (NDN) to simplify the process of exchanging information, enabling new types of distributed learning algorithms.The outcomes of this project may improve the distributed learning in a vast number of potential applications, ranging from smart cities to satellite data analysis to augmented reality. The project also supports ongoing efforts in education and broadening participation in computing to underrepresented communities. These efforts include (i) development of new course materials that teach students about the challenges of realistic machine learning deployments, (ii) recruitment of high school and undergraduate students to work on suitably scoped projects that will contribute to the research vision, and (iii) presentations and mentoring sessions aimed at increasing the participation of underrepresented minorities in computing.This project is a collaborative effort between Carnegie Mellon University and Northeastern University. Results, including algorithm implementations, technical reports, and measurement datasets, will be made publicly available on a repository hosted by CMU. These will remain available for at least two years after the conclusion of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法已经彻底改变了许多领域,使他们能够使用历史数据进行预测或检测模式,然后可以用于自动化各种任务并为用户创建新的应用程序。然而,当今许多机器学习应用所需的数据通常是由多个传感器组成的网络收集的。例如,来自智慧城市中环境传感器的数据可以用于预测城市中不同位置的空气污染或交通。使用机器学习算法分析这些数据,然后需要这些设备相互合作,交换数据和模型。该项目设计了设备高效协作的机制。当设备受到异构资源约束时,分布式机器学习算法尤其具有挑战性,例如,具有变化的计算、功率或带宽限制,这在当今的网络中是常见的情况。传统的学习算法要么将所有数据集中到一个位置进行分析,要么将学习算法完全分布到数据源。一种更灵活的方法,而是智能地将数据带到学习算法的计算组件中,反之将计算带到数据源中,可以更好地利用这些设备的资源,但提出了一个自然的问题,即数据和模型组件应该如何通过网络移动。该项目开发了一种以数据为中心的分布式学习方法,利用命名数据网络(NDN)的进步来简化信息交换过程,实现新型分布式学习算法。该项目的成果可能会在大量潜在应用中改进分布式学习,从智能城市到卫星数据分析再到增强现实。该项目还支持目前在教育方面的努力,并扩大代表性不足的社区对计算的参与。这些努力包括:(i)开发新的课程材料,向学生讲授现实机器学习部署的挑战;(ii)招募高中和本科生从事范围适当的项目,这些项目将有助于实现研究愿景;以及(iii)介绍和指导会议,旨在增加在计算代表性不足的少数民族的参与。卡内基梅隆大学和东北大学。结果,包括算法实现,技术报告和测量数据集,将在CMU托管的存储库中公开提供。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
No-Regret Caching via Online Mirror Descent
通过在线镜像下降进行无悔缓存
Experimental Design Networks: A Paradigm for Serving Heterogeneous Learners Under Networking Constraints
实验设计网络:在网络约束下为异构学习者提供服务的范例
  • DOI:
    10.1109/tnet.2023.3243534
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Yuanyuan;Liu, Yuezhou;Su, Lili;Yeh, Edmund;Ioannidis, Stratis
  • 通讯作者:
    Ioannidis, Stratis
Online Caching Networks with Adversarial Guarantees
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stratis Ioannidis其他文献

Content Search through Comparisons
通过比较进行内容搜索
  • DOI:
    10.1007/978-3-642-22012-8_48
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amin Karbasi;Stratis Ioannidis;L. Massoulié
  • 通讯作者:
    L. Massoulié
Truthful Linear Regression
真实的线性回归
Automated diagnosis of plus disease in retinopathy of prematurity using deep learning
使用深度学习自动诊断早产儿视网膜病变
Distributed caching over heterogeneous mobile networks
  • DOI:
    10.1007/s11134-012-9297-7
  • 发表时间:
    2012-04-20
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Stratis Ioannidis;Laurent Massoulié;Augustin Chaintreau
  • 通讯作者:
    Augustin Chaintreau
$ ext{Omni-CNN}$: A Modality-Agnostic Neural Network for mmWave Beam Selection
$ ext{Omni-CNN}$:用于毫米波波束选择的模态不可知神经网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Batool Salehi;Debashri Roy;T. Jian;Chris Dick;Stratis Ioannidis;Kaushik R. Chowdhury
  • 通讯作者:
    Kaushik R. Chowdhury

Stratis Ioannidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stratis Ioannidis', 18)}}的其他基金

NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
  • 批准号:
    2013756
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
RTML: Large: Efficient and Adaptive Real-Time Learning for Next Generation Wireless Systems
RTML:大型:下一代无线系统的高效、自适应实时学习
  • 批准号:
    1937500
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Sparsity in Massively Distributed Optimization
职业:在大规模分布式优化中利用稀疏性
  • 批准号:
    1750539
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Design and Computation of Scalable Graph Distances in Metric Spaces: A Unified Multiscale Interpretable Perspective
BIGDATA:F:协作研究:度量空间中可扩展图距离的设计和计算:统一的多尺度可解释视角
  • 批准号:
    1741197
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
NeTS: Small: Caching Networks with Optimality Guarantees
NetS:小型:具有最优性保证的缓存网络
  • 批准号:
    1718355
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Massively Scalable Secure Computation Infrastructure Using FPGAs
SaTC:CORE:小型:使用 FPGA 的大规模可扩展安全计算基础设施
  • 批准号:
    1717213
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Assistive Integrative Support Tool for Retinopathy of Prematurity
SCH:INT:合作研究:早产儿视网膜病变辅助综合支持工具
  • 批准号:
    1622536
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了