RTML: Large: Efficient and Adaptive Real-Time Learning for Next Generation Wireless Systems
RTML:大型:下一代无线系统的高效、自适应实时学习
基本信息
- 批准号:1937500
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Emerging wireless standards and the promise of 5G communication are driven by the need to attain faster data rates and ultra-low latency. Many incredible bleeding-edge applications, such as community/shared virtual reality experiences and self-driving cars, crucially rely on the ubiquitous availability and real-time reconfigurability of high-speed wireless links, which in turn strongly relies on the ability of next-generation wireless devices to perform a broad variety of inference tasks in real-time. The latency requirements associated with these applications imply the need for improved and accelerated machine learning through dedicated hardware. Moreover, due to the unpredictable nature of the wireless channel, inference algorithms must be able to adapt and evolve in the presence of an unfamiliar environment. This project seeks to solve this foundational challenge, with successful outcomes being able to achieve unprecedented efficiency improvements in next generation wireless systems. Ideas and findings from the project are incorporated into a number of accessible seminar talks geared at high-school and undergraduate students, to encourage further interest in engineering and science, as well as through multi-disciplinary tutorials aimed at both the wireless networking and machine learning communities.The project, executed by a multidisciplinary team of machine learning, systems, and networking researchers, advances the state of the art through novel deep learning architectures tailored to inference tasks pertinent to next generation wireless devices. It also incorporates novel model compression techniques, producing a hardware-friendly structured pruning approach for fully-connected and convolutional layers of deep neural networks, combined with a novel quantization scheme learned jointly during training. The project's quantization scheme and its hyper-parameter tuning is co-designed with an field programmable gate array (FPGA) hardware implementation and determined via deep reinforcement learning. The adaptation of parts of the network in the presence of new samples is enabled by blending lifelong learning approaches like dynamic networks and complementary learning as new objectives during training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的无线标准和5G通信的前景是由实现更快数据速率和超低延迟的需求驱动的。许多令人难以置信的前沿应用,如社区/共享虚拟现实体验和自动驾驶汽车,都依赖于高速无线链路的无处不在的可用性和实时可重构性,而这又严重依赖于下一代无线设备实时执行各种推理任务的能力。与这些应用程序相关的延迟要求意味着需要通过专用硬件改进和加速机器学习。 此外,由于无线信道的不可预测性,推理算法必须能够在不熟悉的环境中适应和发展。该项目旨在解决这一基本挑战,成功的结果能够在下一代无线系统中实现前所未有的效率提升。该项目的想法和发现被纳入了一些面向高中和本科生的无障碍研讨会演讲中,以鼓励对工程和科学的进一步兴趣,以及针对无线网络和机器学习社区的多学科教程。该项目由机器学习,系统和网络研究人员的多学科团队执行,通过针对与下一代无线设备相关的推理任务定制的新型深度学习架构来推进现有技术。它还结合了新的模型压缩技术,为深度神经网络的全连接和卷积层提供了一种硬件友好的结构化修剪方法,并结合了在训练过程中联合学习的新量化方案。该项目的量化方案及其超参数调整与现场可编程门阵列(FPGA)硬件实现共同设计,并通过深度强化学习确定。通过将动态网络和补充学习等终身学习方法作为培训期间的新目标,使网络的部分内容能够适应新样本。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pruning Adversarially Robust Neural Networks without Adversarial Examples
- DOI:10.1109/icdm54844.2022.00120
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:T. Jian;Zifeng Wang;Yanzhi Wang;Jennifer G. Dy;Stratis Ioannidis
- 通讯作者:T. Jian;Zifeng Wang;Yanzhi Wang;Jennifer G. Dy;Stratis Ioannidis
Open-World Class Discovery with Kernel Networks
- DOI:10.1109/icdm50108.2020.00072
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Zifeng Wang;Batool Salehi;Andrey Gritsenko;K. Chowdhury;Stratis Ioannidis;Jennifer G. Dy
- 通讯作者:Zifeng Wang;Batool Salehi;Andrey Gritsenko;K. Chowdhury;Stratis Ioannidis;Jennifer G. Dy
An Image Enhancing Pattern-based Sparsity for Real-time Inference on Mobile Devices
- DOI:10.1007/978-3-030-58601-0_37
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Xiaolong Ma;Wei Niu;Tianyun Zhang;Sijia Liu;Fu-Ming Guo;Sheng Lin;Hongjia Li;Xiang Chen;Jian Tang;Kaisheng Ma;Bin Ren;Yanzhi Wang
- 通讯作者:Xiaolong Ma;Wei Niu;Tianyun Zhang;Sijia Liu;Fu-Ming Guo;Sheng Lin;Hongjia Li;Xiang Chen;Jian Tang;Kaisheng Ma;Bin Ren;Yanzhi Wang
Machine Learning on Camera Images for Fast mmWave Beamforming
- DOI:10.1109/mass50613.2020.00049
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Batool Salehi;M. Belgiovine;Saray Sanchez;Jennifer G. Dy;Stratis Ioannidis;K. Chowdhury
- 通讯作者:Batool Salehi;M. Belgiovine;Saray Sanchez;Jennifer G. Dy;Stratis Ioannidis;K. Chowdhury
AirNN: Over-the-Air Computation for Neural Networks via Reconfigurable Intelligent Surfaces
- DOI:10.1109/tnet.2022.3225883
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Sara Garcia Sanchez;Guillem Reus-Muns;Carlos Bocanegra;Yanyu Li;Ufuk Muncuk;Yousof Naderi;Yanzhi Wang;Stratis Ioannidis;K. Chowdhury
- 通讯作者:Sara Garcia Sanchez;Guillem Reus-Muns;Carlos Bocanegra;Yanyu Li;Ufuk Muncuk;Yousof Naderi;Yanzhi Wang;Stratis Ioannidis;K. Chowdhury
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stratis Ioannidis其他文献
Content Search through Comparisons
通过比较进行内容搜索
- DOI:
10.1007/978-3-642-22012-8_48 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Amin Karbasi;Stratis Ioannidis;L. Massoulié - 通讯作者:
L. Massoulié
Truthful Linear Regression
真实的线性回归
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Rachel Cummings;Stratis Ioannidis;Katrina Ligett - 通讯作者:
Katrina Ligett
Automated diagnosis of plus disease in retinopathy of prematurity using deep learning
使用深度学习自动诊断早产儿视网膜病变
- DOI:
10.1016/j.jaapos.2018.07.036 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
J. Campbell;James A. Brown;R. Chan;Jennifer G. Dy;Stratis Ioannidis;Deniz Erdoğmuş;Jayashree Kalpathy;M. Chiang - 通讯作者:
M. Chiang
Distributed caching over heterogeneous mobile networks
- DOI:
10.1007/s11134-012-9297-7 - 发表时间:
2012-04-20 - 期刊:
- 影响因子:0.700
- 作者:
Stratis Ioannidis;Laurent Massoulié;Augustin Chaintreau - 通讯作者:
Augustin Chaintreau
$ ext{Omni-CNN}$: A Modality-Agnostic Neural Network for mmWave Beam Selection
$ ext{Omni-CNN}$:用于毫米波波束选择的模态不可知神经网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.8
- 作者:
Batool Salehi;Debashri Roy;T. Jian;Chris Dick;Stratis Ioannidis;Kaushik R. Chowdhury - 通讯作者:
Kaushik R. Chowdhury
Stratis Ioannidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stratis Ioannidis', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Data-Centric Networks for Distributed Learning
合作研究:CNS 核心:媒介:用于分布式学习的以数据为中心的网络
- 批准号:
2107062 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
- 批准号:
2013756 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Leveraging Sparsity in Massively Distributed Optimization
职业:在大规模分布式优化中利用稀疏性
- 批准号:
1750539 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
BIGDATA: F: Collaborative Research: Design and Computation of Scalable Graph Distances in Metric Spaces: A Unified Multiscale Interpretable Perspective
BIGDATA:F:协作研究:度量空间中可扩展图距离的设计和计算:统一的多尺度可解释视角
- 批准号:
1741197 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NeTS: Small: Caching Networks with Optimality Guarantees
NetS:小型:具有最优性保证的缓存网络
- 批准号:
1718355 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Massively Scalable Secure Computation Infrastructure Using FPGAs
SaTC:CORE:小型:使用 FPGA 的大规模可扩展安全计算基础设施
- 批准号:
1717213 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Assistive Integrative Support Tool for Retinopathy of Prematurity
SCH:INT:合作研究:早产儿视网膜病变辅助综合支持工具
- 批准号:
1622536 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Efficient and Scalable Large Foundational Model Training on Supercomputers for Science
职业:科学超级计算机上高效且可扩展的大型基础模型训练
- 批准号:
2340011 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
- 批准号:
2318925 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
- 批准号:
2321329 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
- 批准号:
2302763 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
SEALPTSC Strain and Photonic Engineering Toward Stable, Efficient, and Large-scale All-perovskite Triple-junction Solar Cells
SEALPTSC 应变和光子工程实现稳定、高效和大规模全钙钛矿三结太阳能电池
- 批准号:
EP/Y029216/1 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Fellowship