CAREER: Scalable Manufacturing of Two-dimensional Atomic Layer Materials for Energy-efficient Electronic Devices via Selective-area Atomic Layer Deposition

职业:通过选择性区域原子层沉积大规模制造用于节能电子设备的二维原子层材料

基本信息

  • 批准号:
    1751268
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant supports research in the scalable manufacturing of atomically-thin semiconducting materials for high performance, energy-efficient electronic devices. The project studies selective-area or seeded atomic layer deposition, a manufacturing technique used to deposit materials with high precision and uniformity. This award establishes a new mode of manufacturing for low temperature fabrication of high quality two-dimensional nanomaterials, which allows early adoption of these new materials into the semiconductor industry and supports continued improvements in electronic device performance, including information storage capacity and computational power, all while lowering the energy demands of these devices. These materials are also promising components of quantum information processing devices, thus aligning well with NSF's Quantum Leap effort. The results of this research benefits society and the national economy through the advancement of innovative solutions to the nation's increasing energy and computational demands. Additionally, this research advances engineering knowledge and trains the next generation of scientists and engineers in advanced manufacturing and prepare them for careers in industry. Through partnership with Boise State's Science, Technology, Engineering, and Mathematics (STEM) Diversity and Inclusion Initiative, the research and outreach activities of this award expands participation for underrepresented groups, directly supporting the aims of the NSF INCLUDES program. Semiconducting two-dimensional (2D) atomic layer materials, such as transition metal dichalcogenides, offer large direct band gaps, high on-off ratios, and high room temperature mobilities. The key challenge to deploying these materials in memory and logic devices is the ability to synthesize them in their 2D form at device compatible temperatures with minimal substrate interaction, control over the number of layers, and control over the chemical composition for heterostructure formation and doping. Selective-area atomic layer deposition (ALD), in a unique van der Waals growth mode, can overcome the current limitations for synthesis of the 2D nanomaterials. Typically, 2D materials are grown by chemical vapor deposition at high temperatures, which is not suitable for high aspect-ratio structures. Low temperature ALD produces amorphous films, which requires high temperature annealing to generate the desired microstructure, which is not suitable for some semiconductor devices. This research is to provide the knowledge necessary to synthesize crystalline 2D atomic layer materials at backend-compatible low temperatures through selective-area or seeded ALD with van der Waals bonding to the underlying substrate. The research team employs in situ and ex situ experimentation combined with first-principles computation to understand the chemical reactions critical to both promoting and inhibiting the nucleation and growth of 2D materials on engineered surfaces for high volume semiconductor device manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展计划(CAREER)资助支持原子薄半导体材料的可扩展制造研究,用于高性能,节能电子设备。该项目研究选择性区域或种子原子层沉积,一种用于高精度和均匀性存款材料的制造技术。该奖项为高质量二维纳米材料的低温制造建立了一种新的制造模式,这使得这些新材料能够早期应用于半导体行业,并支持电子设备性能的持续改进,包括信息存储容量和计算能力,同时降低这些设备的能源需求。这些材料也是量子信息处理设备的有前途的组件,因此与NSF的量子飞跃努力保持一致。这项研究的结果有利于社会和国家经济通过创新的解决方案,以国家不断增长的能源和计算需求的进步。此外,这项研究推进了工程知识,培养了先进制造业的下一代科学家和工程师,并为他们在工业中的职业生涯做好了准备。通过与博伊西州的科学,技术,工程和数学(STEM)多样性和包容性倡议的合作伙伴关系,该奖项的研究和推广活动扩大了代表性不足的群体的参与,直接支持NSF INCLUDES计划的目标。半导体二维(2D)原子层材料,例如过渡金属二硫属化物,提供大的直接带隙、高的开-关比和高的室温迁移率。在存储器和逻辑器件中部署这些材料的关键挑战是在器件兼容温度下以其2D形式合成它们的能力,具有最小的衬底相互作用,控制层数,以及控制异质结构形成和掺杂的化学成分。选择性区域原子层沉积(ALD)以独特的货车范德华生长模式,可以克服目前二维纳米材料合成的局限性。典型地,2D材料通过化学气相沉积在高温下生长,这不适合于高深宽比结构。低温ALD产生非晶膜,其需要高温退火以产生所需的微结构,这不适合于某些半导体器件。这项研究是为了提供必要的知识,以合成晶体二维原子层材料在后端兼容的低温下,通过选择性区域或籽晶ALD与货车德瓦尔斯键合到下面的衬底。研究小组采用原位和非原位实验,结合第一次-原理计算,以了解化学反应的关键,促进和抑制成核和生长的二维材料的工程表面上的大批量半导体器件制造。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查的搜索.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nucleation and growth of molybdenum disulfide grown by thermal atomic layer deposition on metal oxides
  • DOI:
    10.1116/6.0002024
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jake Soares;Steven Letourneau;M. Lawson;A. Mane;Yu Lu;Yaqiao Wu;S. Hues;Lan Li;J. Elam;E. Graugnard
  • 通讯作者:
    Jake Soares;Steven Letourneau;M. Lawson;A. Mane;Yu Lu;Yaqiao Wu;S. Hues;Lan Li;J. Elam;E. Graugnard
First-principles studies of MoF6 absorption on hydroxylated and non-hydroxylated metal oxide surfaces and implications for atomic layer deposition of MoS2
  • DOI:
    10.1016/j.apsusc.2020.148461
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    M. Lawson;E. Graugnard;Lan Li
  • 通讯作者:
    M. Lawson;E. Graugnard;Lan Li
Intrinsic and atomic layer etching enhanced area-selective atomic layer deposition of molybdenum disulfide thin films
二硫化钼薄膜的本征和原子层蚀刻增强区域选择性原子层沉积
  • DOI:
    10.1116/6.0002811
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Soares, Jake;Jen, Wesley;Hues, John D.;Lysne, Drew;Wensel, Jesse;Hues, Steven M.;Graugnard, Elton
  • 通讯作者:
    Graugnard, Elton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elton Graugnard其他文献

Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld
镁合金 AZ31B 钨极惰性气体保护焊局部腐蚀行为的空间映射
  • DOI:
    10.1016/j.jma.2024.12.019
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    13.800
  • 作者:
    Leslie G. (Bland) Miller;Corey M. Efaw;Rebecca F. Schaller;Kari Higginbotham;Steve D. Johns;Paul H. Davis;Elton Graugnard;John R. Scully;Michael F. Hurley
  • 通讯作者:
    Michael F. Hurley

Elton Graugnard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elton Graugnard', 18)}}的其他基金

MRI: Acquisition of a Controlled-Environment Atomic Force Microscope for Nanoelectronic Characterization
MRI:获取受控环境原子力显微镜用于纳米电子表征
  • 批准号:
    1727026
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ERI: Robust and Scalable Manufacturing of Ultra-Sensitive and Selective Molecule Sensor Arrays
ERI:稳健且可扩展的超灵敏和选择性分子传感器阵列制造
  • 批准号:
    2301668
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Scalable Manufacturing of Nanobubbles via Ultrasonic Shearing for Biomedicine
通过超声波剪切大规模制造生物医学纳米气泡
  • 批准号:
    2322488
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Manufacturing Technology for Mobile Signal Penetrating Energy-Efficient Low-Emissivity Windows
SBIR 第一阶段:移动信号穿透节能低发射率窗户的可扩展制造技术
  • 批准号:
    2233675
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
  • 批准号:
    2242049
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
  • 批准号:
    2326072
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了