CAREER: Trajectory Planning for Highly Dynamic Legged Robots in Complex Environments

职业:复杂环境中高动态腿式机器人的轨迹规划

基本信息

  • 批准号:
    1752262
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development Program (CAREER) project will improve the ability of legged robots to traverse complex environments. The ultimate objective of the project is to rival the ability of animals to navigate daunting obstacles in order to reach a desired goal. In contrast to standard quasi-static approaches to robot path planning, these bio-inspired methods will allow highly dynamic behavior -- that is, during its motion the robot will be able to pass through positions that would be impossibly unbalanced if the robot was standing still. This may occur as the robot makes a continuous series of jumps, without pausing at the intermediate points. Numerical efficiency, provided by a hierarchical decomposition into well-behaved subproblems, will allow the trajectories to be computed as they are needed. First, solutions will be generated based on a greatly simplified dynamic model, in terms of "global" quantities that describe the translation and rotation of a robot-fixed reference frame. Of particular interest are the force pulses generated during the instants when the jumping robot is in contact with other objects. Possible solution trajectories will be grouped by the number of hops required to reach the destination and the foot locations on the obstacles. Finally a detailed solution will incorporate the "shape" variables that describe the configuration of the robot components with respect to the robot-fixed frame. The findings from this study will help lead to the creation of legged robots for use in inhospitable or dangerous real-world environments, including for disaster response, military applications, and exploration of inaccessible or inhospitable locations. The project will also build upon the appeal of agile legged robots for education and outreach to high school, undergraduate, and graduate students, including underrepresented minorities, to encourage the development of the next generation of engineers. The objective of this study is to establish close connections between the mathematical modeling of legged robot systems, trajectory planning strategies, and the hardware design principles needed to create highly dynamic legged robots navigating complex unstructured environments. To realize the goal, this project will develop a hierarchical understanding of the dynamic behavior of position variables (global position and orientation) and shape variables (internal configuration) under the application of contact forces. Based on this understanding, a multilevel process will be sought for designing a collision-free feasible trajectory for the position variables, and then deforming the trajectory while gradually taking into account the effects of the shape variables. This will be achieved by (1) introducing model structures for legged robot systems that provide a hierarchical understanding and abstraction of complex dynamics, (2) establishing a trajectory-planning framework that combines approaches from convex optimization and numerical continuation methods by utilizing the newly obtained model structures, and (3) exploring hardware design principles that are tightly integrated with the trajectory-planning framework for rigorous validation and demonstration of the methods using torque-controlled robotic quadrupeds. Realization of these aims will lay the foundation for a new class of trajectory-planning problems for the locomotion of highly dynamic legged robots navigating complex environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展计划(Career)项目将提高有腿机器人穿越复杂环境的能力。该项目的最终目标是与动物的能力相媲美,以克服令人生畏的障碍,以达到预期的目标。与机器人路径规划的标准准静态方法相比,这些仿生方法将允许高度动态的行为——也就是说,在机器人运动过程中,如果机器人静止不动,机器人将能够通过不可能不平衡的位置。这可能发生在机器人进行连续的跳跃时,而没有在中间点暂停。数值效率由分层分解为行为良好的子问题提供,将允许在需要时计算轨迹。首先,根据描述机器人固定参考系的平移和旋转的“全局”量,将基于大大简化的动态模型生成解决方案。特别令人感兴趣的是跳跃机器人与其他物体接触时瞬间产生的力脉冲。可能的解决方案轨迹将根据到达目的地所需的跳数和脚在障碍物上的位置进行分组。最后,详细的解决方案将包含描述机器人部件相对于机器人固定框架的配置的“形状”变量。这项研究的结果将有助于创造出在恶劣或危险的现实环境中使用的有腿机器人,包括灾难响应、军事应用以及探索难以进入或不适宜居住的地方。该项目还将以灵活的有腿机器人的吸引力为基础,面向高中、本科生和研究生,包括代表性不足的少数民族,以鼓励下一代工程师的发展。本研究的目的是建立腿式机器人系统的数学建模、轨迹规划策略和硬件设计原则之间的紧密联系,以创建在复杂非结构化环境中导航的高动态腿式机器人。为了实现这一目标,本项目将对位置变量(全局位置和方向)和形状变量(内部配置)在接触力作用下的动态行为进行分层理解。在此基础上,寻求一个多层次的过程,为位置变量设计一个无碰撞的可行轨迹,然后在逐渐考虑形状变量影响的情况下对轨迹进行变形。这将通过(1)为有腿机器人系统引入模型结构来实现,该模型结构提供了对复杂动力学的分层理解和抽象;(2)利用新获得的模型结构,建立一个结合了凸优化和数值延拓方法的轨迹规划框架;(3)探索与轨迹规划框架紧密结合的硬件设计原则,以严格验证和演示使用力矩控制机器人四足动物的方法。这些目标的实现将为高动态腿式机器人在复杂环境中运动的新一类轨迹规划问题奠定基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Centroidal-momentum-based trajectory generation for legged locomotion
  • DOI:
    10.1016/j.mechatronics.2020.102364
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Li, Chuanzheng;Ding, Yanran;Park, Hae-Won
  • 通讯作者:
    Park, Hae-Won
Representation-Free Model Predictive Control for Dynamic Motions in Quadrupeds
  • DOI:
    10.1109/tro.2020.3046415
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Ding, Yanran;Pandala, Abhishek;Park, Hae-Won
  • 通讯作者:
    Park, Hae-Won
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hae-Won Park其他文献

Hae-Won Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rapid Local Trajectory Planning for Fast-moving Autonomous Ground Vehicles in Unknown Environments
未知环境中快速移动自主地面车辆的快速局部轨迹规划
  • 批准号:
    2902603
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Trajectory Optimization and Mission Planning for Quadrupedal Robots
四足机器人的轨迹优化和任务规划
  • 批准号:
    2280867
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Using Pedestrian Movement Flow in Trajectory Planning for a Mobile Robot
在移动机器人的轨迹规划中使用行人运动流
  • 批准号:
    527333-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
GROKO-Plan: GRaph-based, Optimal and COoperative Trajectory planning for Interacting Automobiles
GROKO-Plan:基于 GRaph 的交互汽车最优协作轨迹规划
  • 批准号:
    412371229
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Priority Programmes
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
  • 批准号:
    RGPIN-2014-03879
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectory Planning and Control for Underactuated Dual Collaborative Overhead Crane Systems
欠驱动双协作桥式起重机系统的轨迹规划与控制
  • 批准号:
    18F18363
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dynamic modeling and optimal trajectory planning for multi-axis contour machining for aerospace parts
航空航天零件多轴轮廓加工动态建模与最优轨迹规划
  • 批准号:
    462114-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative Research and Development Grants
Robot Trajectory Planning under Uncertainty
不确定性下的机器人轨迹规划
  • 批准号:
    511026-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Enhanced Flight Planning by introducing stochastic trajectory data
通过引入随机轨迹数据增强飞行计划
  • 批准号:
    347224103
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
  • 批准号:
    RGPIN-2014-03879
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了