CAREER: Unveiling the Governing Mechanisms of Fatigue Failure in Additively Manufactured Aluminum

事业:揭示增材制造铝材疲劳失效的控制机制

基本信息

  • 批准号:
    1752400
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Additive manufacturing (AM), often referred to as 3D printing, is an exciting technology that can offer more flexibility and efficiency in the production of complex metal parts compared to conventional manufacturing. However, the path to AM as a viable and safe alternative in applications where structural components must carry loads (in some cases, where components must sustain repetitive loading over long periods of time) is at a critical junction. The widespread incorporation of this transformative manufacturing technology is hampered by the fact that it is currently not possible to predict when and why an additively manufactured metal component might fail, and to design the component accordingly to mitigate risk of failure. This presents a major problem for many industries that are looking to use AM to produce metal load-bearing components. This Faculty Early Career Development Program (CAREER) award supports fundamental research to address this pressing need and to enable the expanded, yet safe, use of metal AM in many industries, including aerospace, automotive, biomedical, manufacturing, and national defense. The research is closely integrated with a unique outreach program that will engage students across different age levels and backgrounds, including middle-school students from rural locations in Utah.The research supported by this CAREER award is a fundamental step toward expanding the use of AM to fatigue-critical applications through the discovery of 3D, microstructure-sensitive, fatigue-crack driving mechanisms in additively manufactured aluminum. Two parallel research thrusts will be carried out. One thrust will focus on experimentally characterizing the microstructural features in 3D neighborhoods of fatigue cracks observed in aluminum specimens produced by laser powder bed fusion. The second thrust will focus on numerically characterizing the local micromechanical fields that evolve in 3D as a function of underlying, manufacturing-induced microstructure and defect distribution, with particular focus on residual-stress incompatibility, porosity, and surface roughness. Data-driven approaches will be leveraged across the experimental and numerical data sets to provide new insights into the mechanisms responsible for fatigue failure among the specimens. While the research focuses on aluminum alloys, it is anticipated that the findings regarding the relative importance of geometrical defects, like pores and surface roughness, versus intrinsic material defects on fatigue failure of additively manufactured parts could be broadly applicable to other metals as well.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
增材制造 (AM),通常称为 3D 打印,是一项令人兴奋的技术,与传统制造相比,它可以在复杂金属零件的生产中提供更大的灵活性和效率。然而,在结构部件必须承载负载(在某些情况下,部件必须长时间承受重复负载)的应用中,增材制造作为可行且安全的替代方案的路径正处于关键时刻。这种变革性制造技术的广泛应用受到了以下事实的阻碍:目前无法预测增材制造的金属部件何时以及为何会发生故障,并相应地设计部件以降低故障风险。这对于许多希望使用增材制造技术生产金属承重部件的行业来说是一个主要问题。该学院早期职业发展计划 (CAREER) 奖项支持基础研究,以满足这一迫切需求,并在许多行业(包括航空航天、汽车、生物医学、制造和国防)扩大金属增材制造的安全使用。该研究与一项独特的推广计划紧密结合,该计划将吸引不同年龄层和背景的学生,包括来自犹他州农村地区的中学生。这项职业奖支持的研究是通过在增材制造铝中发现 3D、微观结构敏感、疲劳裂纹驱动机制,将增材制造的使用扩展到疲劳关键应用的根本一步。将开展两项平行的研究工作。其中一项重点是通过实验表征在激光粉末床熔合生产的铝样品中观察到的疲劳裂纹 3D 邻域的微观结构特征。第二个重点是对 3D 中演变的局部微机械场进行数值表征,作为底层、制造引起的微观结构和缺陷分布的函数,特别关注残余应力不相容性、孔隙率和表面粗糙度。将在实验和数值数据集中利用数据驱动的方法,为样本疲劳失效的机制提供新的见解。虽然该研究的重点是铝合金,但预计有关几何缺陷(如孔隙和表面粗糙度)与内在材料缺陷对增材制造零件疲劳失效的相对重要性的研究结果也可以广泛适用于其他金属。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持 标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convolutional neural networks for expediting the determination of minimum volume requirements for studies of microstructurally small cracks, part II: Model interpretation
  • DOI:
    10.1016/j.commatsci.2023.112261
  • 发表时间:
    2023-06-03
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    DeMille,Karen J.;Spear,Ashley D.
  • 通讯作者:
    Spear,Ashley D.
A void descriptor function to uniquely characterize pore networks and predict ductile-metal failure properties
  • DOI:
    10.1007/s10704-020-00463-1
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    J. M. Erickson;Aowabin Rahman;A. Spear
  • 通讯作者:
    J. M. Erickson;Aowabin Rahman;A. Spear
Evaluation of a Modified Void Descriptor Function to Uniquely Characterize Pore Networks and Predict Fracture-Related Properties in Additively Manufactured Metals
  • DOI:
    10.1016/j.actamat.2021.117464
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Dillon Watring;J. Benzing;O. L. Kafka;L. Liew;Newell Moser;J. Erickson;N. Hrabe;A. Spear
  • 通讯作者:
    Dillon Watring;J. Benzing;O. L. Kafka;L. Liew;Newell Moser;J. Erickson;N. Hrabe;A. Spear
Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion
Convolutional neural networks for expediting the determination of minimum volume requirements for studies of microstructurally small cracks, Part I: Model implementation and predictions
  • DOI:
    10.1016/j.commatsci.2022.111290
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Karen J. DeMille;A. Spear
  • 通讯作者:
    Karen J. DeMille;A. Spear
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley Spear其他文献

A review of artificial intelligence (AI)-based applications to nanocomposites
基于人工智能(AI)的纳米复合材料应用综述
  • DOI:
    10.1016/j.compositesa.2025.109027
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Krishna Prasath Logakannan;Ibrahim Guven;Gregory Odegard;Kan Wang;Chuck Zhang;Zhiyong Liang;Ashley Spear
  • 通讯作者:
    Ashley Spear
Multiphysics Modeling Framework to Predict Process-Microstructure-Property Relationship in Fusion-Based Metal Additive Manufacturing
用于预测基于融合的金属增材制造中工艺-微观结构-性能关系的多物理场建模框架
  • DOI:
    10.1021/accountsmr.3c00108
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Wenda Tan;Ashley Spear
  • 通讯作者:
    Ashley Spear

Ashley Spear的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashley Spear', 18)}}的其他基金

DMREF/GOALI/Collaborative Research: Physics-Informed Artificial Intelligence for Parallel Design of Metal Matrix Composites and their Additive Manufacturing
DMREF/GOALI/协作研究:基于物理的人工智能用于金属基复合材料及其增材制造的并行设计
  • 批准号:
    2119671
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DMREF/GOALI: Novel 3D Experiments, Simulations, and Optimization for Accelerated Design of Metallic Foams
DMREF/GOALI:用于金属泡沫加速设计的新颖 3D 实验、模拟和优化
  • 批准号:
    1629660
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
  • 批准号:
    EP/Y035038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
  • 批准号:
    24K16365
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring Microbial Light-Harvesting with Rhodopsin in Extreme Polar Environments: Unveiling Distribution, Diversity, and Functional Insights
在极端极地环境中探索利用视紫红质进行微生物光捕获:揭示分布、多样性和功能见解
  • 批准号:
    24K03072
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Four-stranded fungal fatality: Unveiling G-quadruplexes as future antifungal targets
四链真菌死亡:揭示 G-四链体作为未来抗真菌靶点
  • 批准号:
    BB/Y005058/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Single-Fidelity vs. Multi-Fidelity Computer Experiments: Unveiling the Effectiveness of Multi-Fidelity Emulation
职业:单保真度与多保真度计算机实验:揭示多保真度仿真的有效性
  • 批准号:
    2338018
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Unveiling the structure and stability of prenucleation clusters and their roles in crystallization pathway and final crystal structure
职业:揭示成核前团簇的结构和稳定性及其在结晶途径和最终晶体结构中的作用
  • 批准号:
    2338173
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
RadioForegrounds+: Unveiling the complexity of radio foregrounds for the detectability of the CMB polarization B-mode
RadioForegrounds:揭示无线电前景的复杂性,以实现 CMB 极化 B 模式的可检测性
  • 批准号:
    10101603
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
  • 批准号:
    24K17016
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unveiling High-Mass Star Formation in Low Metallicity Environments through state-of-the-art Observations
通过最先进的观测揭示低金属丰度环境中的高质量恒星形成
  • 批准号:
    24K17103
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unveiling the dead and dusty Universe with the James Webb Space Telescope
用詹姆斯·韦伯太空望远镜揭开死气沉沉、尘土飞扬的宇宙
  • 批准号:
    DP230103161
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了