CAREER: Unraveling Excitation-Energy Transfer Processes in Excitonic Light-Harvesting Systems

职业生涯:揭示激子光捕获系统中的激发能量转移过程

基本信息

  • 批准号:
    1752475
  • 负责人:
  • 金额:
    $ 72.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

The light-harvesting complex found in plants is a complex assembly of molecules that absorbs sunlight and funnels its energy to a central location where it is converted into useable fuels. The efficiency of this solar antenna is remarkable, and it is perhaps one of Nature's most spectacular molecular architectures. While the light-harvesting complex has been studied extensively, the origin of its high efficiency has remained a mystery. The problem is challenging. The light-harvesting complex not only consists of many individual molecules, but the structure is not rigid, and the molecular components are continually moving. The role that this motion plays in facilitating (or impeding) energy transport is unclear. Through support from the Macromolecular, Supramolecular and Nanochemistry Program of the NSF Division of Chemistry, Professor Eisele at The City College of New York (CCNY) is studying bio-inspired nanomaterials to elucidate Nature?s secret to efficient energy transport. Working together, Professor Eisele and her students are synthesizing new nanostructured molecular assemblies that mimic the features of the Nature's light-harvesting complex. They then watch the flow of energy through the assembly using sophisticated near-field scanning optical microscopies with the goal of understanding how structural fluctuations affect energy transport. The project could profoundly impact our understanding of natural photosynthetic systems, and could pave the way towards the design of efficient artificial systems for solar energy conversion applications. In addition, the project is training the next generation of scientists in a broad range fields including nanoscience, spectroscopy and optical microscopy. Through outreach activities, Professor Eisele and her students are working with middle- and high-school students, many from historically underrepresented minority groups, to produce short videos that highlight the challenges and opportunities of nanoscience, from everyday applications to the latest research in super-high resolution nanoimaging.Conceptually, achieving a better understanding of excitation energy transfer (EET) processes in bio-inspired nanomaterials requires model systems that allow thorough testing of current theoretical models of energy transport phenomena. To this end, Professor Eisele is synthesizing well-defined model systems based on monomers such as amphiphilic cyanine dyes and porphyrin dyes. In solution the monomers self-assemble into supramolecular nanotubes that show collective optical properties (excitons) similar to the optical properties found in natural light-harvesting complexes. The nanotube assemblies are then encapsulated in transparent (non-excitonic) materials to mimic the surrounding proteins of the natural light-harvesting complex. The structural and optical properties of individual nanotubes are studied using near field scanning optical microscopy (NSOM) techniques, and the EET process is followed using femtosecond pump-probe techniques. The project is also integrating the pump-probe spectroscopies with NSOM methods, to enable direct observation of energy transport in an individual structure. The experimental results are complemented with Monte Carlo computer simulations of the supramolecular structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在植物中发现的捕光复合物是一种复杂的分子组合体,它吸收阳光并将其能量汇集到一个中心位置,在那里它被转化为可用的燃料。 这个太阳能天线的效率是显著的,它可能是自然界最壮观的分子结构之一。 虽然捕光复合物已被广泛研究,但其高效率的起源仍然是一个谜。 这个问题具有挑战性。捕光复合物不仅由许多单个分子组成,而且结构不是刚性的,分子组分不断移动。这种运动在促进(或阻碍)能量传输中所起的作用尚不清楚。 通过NSF化学部的大分子,超分子和纳米化学项目的支持,纽约城市学院(CCNY)的Alberele教授正在研究生物启发的纳米材料,以阐明自然?这是高效能源运输的秘密。通过共同努力,Mackele教授和她的学生们正在合成新的纳米结构分子组装体,这些组装体模仿了大自然捕光复合体的特征。然后,他们使用复杂的近场扫描光学显微镜观察能量通过组件的流动,目的是了解结构波动如何影响能量传输。该项目可能会深刻影响我们对自然光合系统的理解,并可能为设计用于太阳能转换应用的高效人工系统铺平道路。 此外,该项目还在纳米科学、光谱学和光学显微镜等广泛领域培训下一代科学家。 通过外展活动,Eisele教授和她的学生正在与初中和高中学生合作,其中许多学生来自历史上代表性不足的少数群体,制作强调纳米科学挑战和机遇的短视频,从日常应用到超高分辨率纳米成像的最新研究。从概念上讲,为了更好地理解仿生纳米材料中的激发能量转移(EET)过程,需要模型系统,其允许对能量传输现象的当前理论模型进行彻底测试。为此,Chelele教授正在合成基于两亲性花青染料和卟啉染料等单体的定义明确的模型系统。在溶液中,单体自组装成超分子纳米管,其显示出与天然捕光复合物中发现的光学性质类似的集体光学性质(激子)。然后将纳米管组件封装在透明(非激子)材料中,以模仿天然捕光复合物的周围蛋白质。单个纳米管的结构和光学性质进行了研究,使用近场扫描光学显微镜(NSOM)技术,和EET过程中使用飞秒泵浦-探测技术。该项目还将泵浦探测光谱与NSOM方法相结合,以直接观察单个结构中的能量传输。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding
  • DOI:
    10.1038/s41557-020-00563-4
  • 发表时间:
    2020-11-16
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Ng, Kara;Webster, Megan;Eisele, Dorthe M.
  • 通讯作者:
    Eisele, Dorthe M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dorthe Eisele其他文献

Dorthe Eisele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dorthe Eisele', 18)}}的其他基金

MRI: Acquisition of a Multi-functional Near-field Scanning Optical Microscopy (NSOM) System to Establish a Cross-disciplinary Nano-imaging/spectroscopy Laboratory at CCNY
MRI:购置多功能近场扫描光学显微镜 (NSOM) 系统,在 CCNY 建立跨学科纳米成像/光谱实验室
  • 批准号:
    1531859
  • 财政年份:
    2015
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
Unraveling critical neutrino interaction uncertainties with the upgraded T2K experiment
通过升级的 T2K 实验揭示关键的中微子相互作用的不确定性
  • 批准号:
    24K17065
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
From Mystery to Clarity: Unraveling the Exchange Rate Dynamics in Emerging Market Economies
从神秘到清晰:揭开新兴市场经济体的汇率动态
  • 批准号:
    24K16404
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Gut immunity: Unraveling Mechanisms and Strategies for Neonatal Intestinal Disorder
肠道免疫:揭示新生儿肠道疾病的机制和策略
  • 批准号:
    502588
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
CAREER: Unraveling the evolutionary history of toothed whale acoustic communication
职业:揭开齿鲸声音通讯的进化史
  • 批准号:
    2335991
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
CAREER: Unraveling Oxygen Electrode Delamination Mechanisms in Reversible Solid Oxide Cells for Robust Hydrogen Production
职业:揭示可逆固体氧化物电池中的氧电极分层机制,以实现稳健的氢气生产
  • 批准号:
    2336465
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了