CAREER: Fundamental Investigation of Biofilm Mechanical Properties in Drinking Water Distribution Systems

职业:饮用水分配系统中生物膜机械性能的基础研究

基本信息

  • 批准号:
    1752601
  • 负责人:
  • 金额:
    $ 50.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Drinking water distribution systems (DWDSs) store and transport treated drinking water to millions of customers across the country. Bacteria colonize and coat the inside pipe surfaces in DWDSs to form biofilms that are responsible for a multitude of problems, including corrosion, taste and odor issues, formation of carcinogenic disinfection-by-products (DBPs), loss of the chlorine residual that protects the water from pathogenic microorganisms. All of these problems have serious financial and public health ramifications for the United States. This project aims to develop a fundamental mechanistic understanding of how biofilms attach to pipes, how strong they are, and how easily they can become detached from the pipe surfaces. This research will be used to develop strategies for removal of biofilms from the DWDSs to address the national goal of ensuring safe drinking water to the citizenry. The broader impacts of this research for society include the development of new technological solutions for water utilities and water plant operators. The project also aims to engage Alaska Native undergraduate students in engineering research, with the long-term goal of increasing the number and broadening the participation of Alaska Native students and graduates in engineering.The research goal of this CAREER project is to enhance the understanding of biofilm mechanical properties, with specific application to biofilms in drinking water distribution systems (DWDSs). To meet this overall goal, the proposal has three objectives: (1) investigate the correlation between the biofilm exopolymeric substance (EPS) matrix components and biofilm strength in the DWDS; (2) test novel biofilm weakening strategies and examine the impact of these weakening strategies on the contribution of biofilms to DBP formation in the DWDS; and (3) evaluate the impact of distribution system hydraulics and disinfection on biofilm detachment, biofilm cluster formation and reattachment in the DWDS. A primary educational objective of this project is to involve Alaska Native undergraduate students in engineering research. Biofilms will be grown in special bench-scale biofilm growth reactors that provide controlled and well-defined environmental conditions simulating distribution systems. Advanced microscopic and spectroscopic techniques (e.g., nuclear magnetic resonance spectroscopy, fluorescence spectroscopy, confocal scanning laser microscopy and atomic force microscopy) and biofilm-specific micro-cantilever methods will be employed for determination of EPS compositional analysis and mechanical properties. The PI will also investigate a novel strategy for biofilm weakening by targeting the biofilm EPS, instead of the traditional approach of inactivating biofilm bacteria by using biocides. For that purpose, a suite of strength modifiers and detachment promoting agents for biofilms in DWDSs will be evaluated. The mechanistic study of biofilm cohesive strength will identify the role of various EPS macromolecules in providing strength and structure to biofilms, which will be helpful in designing effective strategies for biofilm control. The insights into the mechanistic basis of biofilm strength and detachment will increase our ability to control and manipulate biofilms in various environmental systems (e.g., biofilters, wastewater treatment, DWDSs) and beyond (e.g., medical biofilms). Understanding biofilm dynamics and detachment in DWDSs will help design better strategies to provide improved drinking water quality, significantly benefitting public health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
饮用水分配系统(DWDS)储存和运输经过处理的饮用水给全国数百万客户。在DWDS中,细菌在管道内表面定植并涂覆以形成生物膜,这是造成许多问题的原因,包括腐蚀、味道和气味问题、致癌消毒副产物(DBP)的形成、保护水免受病原微生物侵害的氯残留的损失。所有这些问题都对美国产生了严重的财政和公共卫生影响。该项目旨在对生物膜如何附着在管道上,它们有多强,以及它们如何容易从管道表面分离进行基本的机械理解。这项研究将用于制定去除DWDS中生物膜的策略,以实现确保公民安全饮用水的国家目标。这项研究对社会的更广泛影响包括为水务公司和水厂运营商开发新的技术解决方案。该项目还旨在让阿拉斯加原住民本科生参与工程研究,长期目标是增加阿拉斯加原住民学生和毕业生的数量并扩大其参与工程的范围。该CAREER项目的研究目标是加强对生物膜机械性能的理解,具体应用于饮用水分配系统(DWDS)中的生物膜。为了实现这一总体目标,该提案有三个目标:(1)调查DWDS中生物膜外聚合物(EPS)基质组分与生物膜强度之间的相关性;(2)测试新的生物膜弱化策略并检查这些弱化策略对DWDS中生物膜对DBP形成的贡献的影响;以及(3)评估分配系统水力学和消毒对DWDS中生物膜脱离、生物膜簇形成和再附着的影响。该项目的主要教育目标是让阿拉斯加土著本科生参与工程研究。 生物膜将在特殊的实验室规模的生物膜生长反应器中生长,该反应器提供模拟分配系统的受控和明确定义的环境条件。先进的显微镜和光谱技术(例如,核磁共振光谱、荧光光谱、共聚焦扫描激光显微镜和原子力显微镜)和生物膜特异性微悬臂梁方法将用于测定EPS组成分析和机械性质。PI还将研究一种通过靶向生物膜EPS来削弱生物膜的新策略,而不是通过使用杀生物剂灭活生物膜细菌的传统方法。为此,将评估DWDS中生物膜的一套强度改性剂和脱附促进剂。生物膜内聚强度的机理研究将确定各种EPS大分子在提供强度和结构的生物膜中的作用,这将有助于设计有效的生物膜控制策略。对生物膜强度和分离的机械基础的了解将提高我们在各种环境系统中控制和操纵生物膜的能力(例如,生物过滤器、废水处理、DWDS)及其他(例如,医学生物膜)。了解DWDS中的生物膜动力学和分离将有助于设计更好的策略,以提供更好的饮用水质量,显着造福公众health.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srijan Aggarwal其他文献

Matrix matters: How extracellular substances shape biofilm structure and mechanical properties
基质很重要:细胞外物质如何塑造生物膜结构和力学性能
  • DOI:
    10.1016/j.colsurfb.2024.114341
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Md Ibnul Hasan;Srijan Aggarwal
  • 通讯作者:
    Srijan Aggarwal
Air quality impacts in the vicinity of a chemical herder mediated in-situ burn for Arctic oil spill response
北极石油泄漏响应中化学围栏介导的现场焚烧附近空气质量的影响
  • DOI:
    10.1016/j.scitotenv.2023.163860
  • 发表时间:
    2023-09-20
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Patrik Petterson Sartz;Md Ibnul Hasan;Srijan Aggarwal
  • 通讯作者:
    Srijan Aggarwal
Unlocking the past: Release of hazardous contaminants into water from thawing permafrost
解开过去之谜:从解冻的永久冻土中释放到水中的有害污染物
  • DOI:
    10.1016/j.jhazmat.2025.139068
  • 发表时间:
    2025-09-05
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Syeda Gulfam-E-Jannat;Luay El Bitar;Busra Sonmez Baghirzade;Upasana Arora;Nibedita Sinha;Shubhabrata Dev;Mikhail Kanevskiy;Srijan Aggarwal;Mary Jo Kirisits;Navid B. Saleh
  • 通讯作者:
    Navid B. Saleh
In Situ Burning for Oil Spill Response in the Arctic: Recovery and Quantification of Chemical Herding Agent OP-40 from Burned Oil Residues

Srijan Aggarwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srijan Aggarwal', 18)}}的其他基金

NNA Track 1: Collaborative Research: A Purpose-Driven Merger of Western Science and Indigenous Knowledge of Water Quality in Alaskan Communities
NNA 轨道 1:合作研究:西方科学与阿拉斯加社区水质知识的有目的的融合
  • 批准号:
    2022590
  • 财政年份:
    2020
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant

相似海外基金

GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
  • 批准号:
    2323120
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
CAREER: Fundamental investigation of twin boundary engineering through cyclic cross-phase-boundary thermomechanical processing
职业:通过循环跨相边界热机械加工对孪晶边界工程进行基础研究
  • 批准号:
    2240125
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
Electrophysiological Investigation of the Fundamental Neural Signature of Empathic Processing
共情处理的基本神经特征的电生理学研究
  • 批准号:
    569559-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
ERI: A Fundamental Investigation of the Effectiveness of Cathode Regeneration Process for Spent Lithium Ion Batteries
ERI:废旧锂离子电池阴极再生过程有效性的基础研究
  • 批准号:
    2138553
  • 财政年份:
    2022
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
Fundamental Investigation of Novel Bark-Based Lignocellulosic Nanofibrils for Composite Applications
用于复合材料应用的新型树皮木质纤维素纳米原纤维的基础研究
  • 批准号:
    RGPIN-2017-06737
  • 财政年份:
    2022
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental investigation into Japanese language education for the equal participation of linguistic and cultural minorities in Japanese society
为促进语言和文化少数群体平等参与日本社会而进行的日语教育的基础调查
  • 批准号:
    22K00666
  • 财政年份:
    2022
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of fundamental properties of intermetallic compounds for novel interconnection materials
新型互连材料金属间化合物基本性质的研究
  • 批准号:
    21H04605
  • 财政年份:
    2021
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
  • 批准号:
    2047109
  • 财政年份:
    2021
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
Fundamental Investigation of Novel Bark-Based Lignocellulosic Nanofibrils for Composite Applications
用于复合材料应用的新型树皮木质纤维素纳米原纤维的基础研究
  • 批准号:
    RGPIN-2017-06737
  • 财政年份:
    2021
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation into the Fundamental Structure, Bonding, and Reactivity of Compounds Featuring Terminal Pnictogen-Pnictogen Multiple Bonds
研究具有末端磷元素-磷元素多重键的化合物的基本结构、成键和反应性
  • 批准号:
    546014-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了