CAREER: Interfacing trapped ions with telecom light
职业:将捕获离子与电信光连接起来
基本信息
- 批准号:1752685
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Atomic physics experiments are making extraordinary advances in manipulating the quantum states of atoms, ions, and photons. Quantum control of these systems paves the way for new technologies such as quantum communication and quantum computing. This project will pioneer the use of lanthanum ions as a quantum bit in order to overcome some challenges for quantum communication networks. In particular, the project seeks to demonstrate an interface between ions and infrared photons. Since infrared light suffers minimal losses in an optical fiber, this approach can extend the size and efficiency of quantum communication networks. Students working on this project will benefit from atomic physics research training using lasers, optics, photonics, and fiber technology. The project will also develop new curricula incorporating quantum information science and photonics technologies. These activities will help prepare the next generation of STEM researchers, educators, and innovators.The research aim of this project is to establish doubly-ionized lanthanum as a quantum bit, or qubit, that can be controlled with telecom-compatible infrared light. Trapped atomic ions are one of the leading platforms for quantum information processing applications due to their long trapping times, good coherence properties, and the availability of methods to precisely control their quantum states using radiation. However, the established ion trapping experiments use ions from elements that mainly interact with visible and ultraviolet light. This poses a challenge for quantum networking because these wavelengths get attenuated in optical fibers. Doubly-ionized lanthanum is unique because telecom-compatible infrared light is all that should be needed for laser cooling and qubit operations. This project will use telecom-compatible infrared light first for Doppler cooling, and then for manipulation of qubits based on magnetic-field-insensitive hyperfine states. This is expected to be advantageous for long-distance quantum communication protocols that use atom-photon entanglement and for distributed quantum computation schemes. Directly interfacing ions with infrared wavelengths will also reduce the complexity of the system, and may thus enhance the potential for scaling up larger quantum networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
原子物理实验在操纵原子、离子和光子的量子态方面取得了非凡的进展。这些系统的量子控制为量子通信和量子计算等新技术铺平了道路。该项目将率先使用镧离子作为量子比特,以克服量子通信网络的一些挑战。特别是,该项目试图展示离子和红外光子之间的界面。由于红外光在光纤中的损耗最小,这种方法可以扩大量子通信网络的规模和效率。从事这个项目的学生将从使用激光、光学、光子学和光纤技术的原子物理研究培训中受益。该项目还将开发结合量子信息科学和光子学技术的新课程。这些活动将有助于为下一代STEM研究人员、教育工作者和创新者做准备。该项目的研究目标是建立双离化镧作为量子比特,即量子比特,可以用电信兼容的红外光控制。囚禁原子离子具有较长的囚禁时间、良好的相干性质以及可以利用辐射精确控制其量子态的方法,是量子信息处理应用的主要平台之一。然而,已建立的离子捕获实验使用的离子来自主要与可见光和紫外光相互作用的元素。这给量子网络带来了挑战,因为这些波长在光纤中会衰减。双电离镧是独一无二的,因为与电信兼容的红外光是激光冷却和量子比特操作所需的全部。该项目将首先使用与电信兼容的红外光进行多普勒冷却,然后用于基于磁场不敏感的超精细状态的量子比特操作。这有望对使用原子-光子纠缠的长距离量子通信协议和分布式量子计算方案有利。离子与红外波长的直接接口也将降低系统的复杂性,从而可能增强扩大更大量子网络的潜力。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Doubly ionized lanthanum as a qubit candidate for quantum networks
- DOI:10.1103/physreva.105.042617
- 发表时间:2021-09
- 期刊:
- 影响因子:2.9
- 作者:S. Olmschenk
- 通讯作者:S. Olmschenk
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Olmschenk其他文献
Linking crystals with a single photon
用单个光子连接晶体
- DOI:
10.1038/nphoton.2012.68 - 发表时间:
2012-03-30 - 期刊:
- 影响因子:32.900
- 作者:
Steven Olmschenk - 通讯作者:
Steven Olmschenk
Steven Olmschenk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Olmschenk', 18)}}的其他基金
NSF Support of Student Travel Grants to APS-DAMOP, May 28 - June 1, 2018, Ft. Lauderdale, FL
NSF 对 APS-DAMOP 学生旅行补助金的支持,2018 年 5 月 28 日至 6 月 1 日,英国《金融时报》
- 批准号:
1832394 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Highly efficient microscale liquid handling and bio interfacing
高效的微量液体处理和生物界面
- 批准号:
FL230100023 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Australian Laureate Fellowships
Fragment-Screen: From fragments to high affinity binders interfacing integrated structural biology, medicinal chemistry and artificial intelligence
片段筛选:从片段到连接集成结构生物学、药物化学和人工智能的高亲和力结合剂
- 批准号:
10055557 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
High-bandwidth neural interfacing using visible light communication
使用可见光通信的高带宽神经接口
- 批准号:
10055735 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
Collaborative Research: Interfacing Students at Three Universities to Elucidate Enzymatic Transformations of Guanide Compounds that Impact Health and the Environment
合作研究:与三所大学的学生合作,阐明影响健康和环境的胍化合物的酶促转化
- 批准号:
2203751 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Regenerative Micro-Electrode Peripheral Nerve Interface for Optimized Proprioceptive and Cutaneous specific interfacing
再生微电极周围神经接口,用于优化本体感觉和皮肤特定接口
- 批准号:
10531069 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Leveraging novel brain-chip interfacing technologies for seizure detection, prediction, and management with mid-throughput drug screening devices
利用新型脑芯片接口技术通过中通量药物筛选设备进行癫痫发作检测、预测和管理
- 批准号:
474563 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship Programs
Developing Stimulation Patterns for Transcutaneous Spinal Cord Stimulation Combined with Brain Computer Interfacing for Motor Rehabilitation
开发经皮脊髓刺激结合脑机接口用于运动康复的刺激模式
- 批准号:
2749293 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Interfacing solid state single emitters with atomic quantum memories
将固态单发射器与原子量子存储器连接
- 批准号:
2742058 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Fault Characterization and Diagnosis at the Distributed Generation Interfacing Inverters
分布式发电接口逆变器的故障表征和诊断
- 批准号:
574909-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
Automatic Service and Microservices Design, Generation, and Interfacing in the Context of Service Oriented Architecture
面向服务架构背景下的自动服务和微服务设计、生成和接口
- 批准号:
RGPIN-2018-06723 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual