4th Annual KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications

第四届偏微分方程、动力系统和应用 KUMUNU 年度会议

基本信息

项目摘要

This award will provide support for participants, especially graduate students, junior researchers, women and mathematicians from under-represented groups in the sciences, to attend the 4th Annual KUMUNU Conference on PDE, Dynamical Systems, and Applications to be held at the University of Kansas on April 21-22, 2018.  This conference is co-organized by faculty from the University of Kansas (KU), the University of Missouri (MU), and the University of Nebraska (NU).  Nearly all physical phenomena are governed by fundamental laws and design principles that directly relate rates of change of one quantity to that of some other quantity.  This powerful idea leads naturally to differential equations, which are widely used as models in mathematical physics and have potential applications to many fields including Bose-Einstein condensates, fluid dynamics, pattern formation, gas dynamics, and fiber optical communication.  This conference will bring together researchers from the geographic area close to Kansas, Missouri and Nebraska to exchange ideas and report new results in differential equations and applications.  Building on the success of the three prior conferences in this conference series, the conference will provide a venue for regional junior and senior researchers, as well as graduate students, to discuss recent advances and challenges in their respective fields.  Additionally, young researchers will be given the opportunity to present their work and to gain insight into this important subject through interactions with senior experts in the field.  The conference website can be found at http://dept.ku.edu/~math/conferences/2018/KUMUNUPDE/Complex nonlinear systems abound in science and engineering, and their behavior is often modeled by systems of nonlinear partial differential equations (PDE). Any progress towards understanding the behavior of their solutions is of paramount importance for a variety of practical applications, including fluid flow, flame front propagation and fiber optical communication. Many PDE can be conveniently described as infinite dimensional dynamical systems, allowing for the use of tools and methodologies from dynamical systems theory to make qualitative and quantitative predictions about the solutions of these systems. Objects like invariant manifolds have been a great aid in understanding the behavior of finite-dimensional dynamical systems, but the connections between nonlinear PDE and dynamical systems is still an area of active current research. In the last few decades, collaborations between researchers in these fields, as well as with those working in their applications, have provided tremendous progress in our understanding of the dynamical behavior, stability and robustness of coherent structures in such nonlinear PDE.  The themes of this conference include (i) fluid dynamics, water waves and dispersive PDE, (ii) existence, dynamics and stability of nonlinear waves in dissipative systems, and (iii) dynamical systems, invariant manifolds and attractors.  These themes are well represented by the regional experts as well as the invited plenary speakers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为参与者提供支持,特别是研究生,初级研究人员,妇女和数学家从科学代表性不足的群体,参加第四届年度KUMUNU会议PDE,动力系统和应用将于2018年4月21日至22日在堪萨斯大学举行。 本次会议由堪萨斯大学(KU)、密苏里州大学(MU)和内布拉斯加大学(NU)的教师共同组织。 几乎所有的物理现象都受到基本定律和设计原则的支配,这些基本定律和设计原则将一个量的变化率与另一个量的变化率直接联系起来。 这个强大的想法自然导致微分方程,它被广泛用作数学物理中的模型,并在许多领域有潜在的应用,包括玻色-爱因斯坦凝聚,流体动力学,图案形成,气体动力学和光纤通信。 本次会议将汇集来自地理区域接近堪萨斯,密苏里州和内布拉斯加州的研究人员交流思想,并报告微分方程和应用的新成果。 在此系列会议之前三次会议成功的基础上,会议将为区域初级和高级研究人员以及研究生提供一个场所,讨论各自领域的最新进展和挑战。 此外,年轻的研究人员将有机会介绍他们的工作,并通过与该领域的高级专家互动来深入了解这一重要课题。 会议网站可以在http://dept.ku.edu/~math/conferences/2018/KUMUNUPDE/Complex上找到,非线性系统在科学和工程中大量存在,它们的行为通常由非线性偏微分方程(PDE)系统建模。对理解其解决方案的行为的任何进展对于各种实际应用都至关重要,包括流体流动,火焰前锋传播和光纤通信。许多偏微分方程可以方便地描述为无限维动力系统,允许使用动力系统理论的工具和方法来对这些系统的解进行定性和定量预测。像不变流形这样的对象在理解有限维动力系统的行为方面有很大的帮助,但是非线性PDE和动力系统之间的联系仍然是当前研究的一个活跃领域。在过去的几十年里,这些领域的研究人员之间的合作,以及与那些在他们的应用工作,提供了巨大的进步,在我们的理解的动力学行为,稳定性和鲁棒性的相干结构在这样的非线性偏微分方程。 本次会议的主题包括(i)流体动力学,水波和色散PDE,(ii)耗散系统中非线性波的存在性,动力学和稳定性,以及(iii)动力系统,不变流形和吸引子。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathew Johnson其他文献

Minimum wages and the multiple functions of wages
最低工资和工资的多重功能
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Rubery;Mathew Johnson;D. Grimshaw
  • 通讯作者:
    D. Grimshaw
Examination of gender differences using the multiple groups DINA model
使用多组 DINA 模型检查性别差异
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathew Johnson;Young;R. Sachdeva;Jianzhou Zhang;M. Waldman;Jung Yeon Park
  • 通讯作者:
    Jung Yeon Park
Campus Classification, Identity, and Change: The Elective Carnegie Classification for Community Engagement
校园分类、身份和变化:社区参与的选修卡内基分类
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John A. Saltmarsh;Mathew Johnson
  • 通讯作者:
    Mathew Johnson
Towards More Disorganised Decentralisation? Collective Bargaining in the Public Sector Under Pay Restraint
走向更加无组织的权力下放?
Civil society organisations in and against the state: Advice, advocacy and activism on the margins of the labour market
国家内部和反对国家的民间社会组织:劳动力市场边缘的建议、倡导和行动
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    S. Mustchin;Mathew Johnson;Marti Lopez‐Andreu
  • 通讯作者:
    Marti Lopez‐Andreu

Mathew Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathew Johnson', 18)}}的其他基金

Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Stochastic Calculus of Variations and Limit Theorems
随机变分和极限定理
  • 批准号:
    2054735
  • 财政年份:
    2021
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Modulations of Periodic Waves in Applied Mathematics
应用数学中的周期波调制
  • 批准号:
    2108749
  • 财政年份:
    2021
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Decent Work and the city
体面劳动与城市
  • 批准号:
    MR/T019433/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Fellowship
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Stability of Nonlinear Waves in Dissipative and Dispersive PDE
耗散和色散偏微分方程中非线性波的稳定性
  • 批准号:
    1211183
  • 财政年份:
    2012
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902192
  • 财政年份:
    2009
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Fellowship Award

相似海外基金

Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
  • 批准号:
    2414575
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
  • 批准号:
    2415059
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Conference: The eleventh annual graduate student mini-conference in computational mathematics
会议:第十一届计算数学研究生小型会议
  • 批准号:
    2349950
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Travel: Support for U.S. Students to Receive Training on Research Cyberinfrastructure at the 2024 Annual Modeling and Simulation Conference (ANNSIM)
旅行:支持美国学生在 2024 年年度建模与仿真会议 (ANNSIM) 上接受研究网络基础设施培训
  • 批准号:
    2425778
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2024 Academy of Management Annual Meeting (AOM)
旅行:2024 年管理学院年会 (AOM) 的 NSF 学生旅行补助金
  • 批准号:
    2420866
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Travel Grant: Enabling Faculty at Under-Resourced Primarily Undergraduate Institutions to Attend the 2024 Fall American Geophysical Union (AGU) Annual Meeting
旅费补助:使资源匮乏的本科院校教师能够参加 2024 年秋季美国地球物理联盟 (AGU) 年会
  • 批准号:
    2422805
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
LTREB: How does inter-annual variation in rainfall interact with soil fertility and chronic disruption of soil moisture dynamics to alter soil C cycling in tropical forests?
LTREB:降雨量的年际变化如何与土壤肥力和土壤湿度动态的长期破坏相互作用,从而改变热带森林的土壤碳循环?
  • 批准号:
    2332006
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Continuing Grant
Conference: 2024 19th Annual Graduate Students Combinatorics Conference
会议:2024年第19届研究生组合学年会
  • 批准号:
    2334815
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
Conference: NSF Student Travel Support for the 38th Annual AAAI Conference on Artificial Intelligence (AAAI-2024)
会议:第 38 届 AAAI 人工智能会议 (AAAI-2024) 的 NSF 学生旅行支持
  • 批准号:
    2412476
  • 财政年份:
    2024
  • 资助金额:
    $ 1.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了