Stability of Nonlinear Waves in Dissipative and Dispersive PDE

耗散和色散偏微分方程中非线性波的稳定性

基本信息

项目摘要

The focus of the proposed research is stability and long-time dynamics of travelling wave solutions of nonlinear partial differential equations that arise in many areas of science and engineering. This proposal will develop a systematic analysis of spectral, linearized, and nonlinear stability and long-time dynamics of spatially periodic traveling structures in a variety of models. In particular, stability of uni-directional and multiply periodic traveling waves with respect to uni-lateral as well as higher-dimensional transverse perturbations will be considered. Furthermore, stability of such traveling structures to non-localized perturbations inducing global phase shifts will be investigated.The main thrust of the project is a study of stability and behavior of traveling waves in many equations arising, for example, as models of water waves and thin films, and in plasma physics and engineering. Such solutions travel at constant speed without changing shape, and often form fundamental building blocks for more complicated solutions of the model equations. Studying their stability to small perturbations (i.e. whether the wave is quickly restored to the orginal wave form) is of practical importance, since waves that are unstable do not naturally manifest themselves in physical situations, except possibly as transient phenomena. This proposal aims to provide researchers with practical and efficient "rules of thumb" to ascertain stability of mathematical solutions arising in physical models. A central component of the proposal is the educational and professional training of undergraduate and graduate students, who will receive interdisciplinary instruction through seminars, conferences, and special topics courses.
拟议的研究重点是稳定性和长期动力学的行波解的非线性偏微分方程,出现在许多领域的科学和工程。 这个建议将发展一个系统的分析频谱,线性化,非线性稳定性和长时间动态的空间周期性旅行结构在各种模型。特别是,稳定性的单向和多周期行波相对于单向以及高维横向扰动将被考虑。此外,还将研究这种行波结构对引起全局相移的非定域扰动的稳定性。该项目的主要目的是研究在许多方程中行波的稳定性和行为,例如,作为水波和薄膜的模型,以及在等离子体物理和工程中。 这种解以恒定速度行进而不改变形状,并且通常形成模型方程的更复杂解的基本构建块。研究它们对小扰动的稳定性(即波是否很快恢复到原始波形)具有实际重要性,因为不稳定的波不会自然地在物理情况下表现出来,除非可能是瞬态现象。这项建议旨在为研究人员提供实用和有效的“经验法则”,以确定物理模型中出现的数学解的稳定性。该提案的一个核心组成部分是本科生和研究生的教育和专业培训,他们将通过研讨会,会议和专题课程接受跨学科指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathew Johnson其他文献

Minimum wages and the multiple functions of wages
最低工资和工资的多重功能
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Rubery;Mathew Johnson;D. Grimshaw
  • 通讯作者:
    D. Grimshaw
Examination of gender differences using the multiple groups DINA model
使用多组 DINA 模型检查性别差异
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathew Johnson;Young;R. Sachdeva;Jianzhou Zhang;M. Waldman;Jung Yeon Park
  • 通讯作者:
    Jung Yeon Park
Campus Classification, Identity, and Change: The Elective Carnegie Classification for Community Engagement
校园分类、身份和变化:社区参与的选修卡内基分类
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John A. Saltmarsh;Mathew Johnson
  • 通讯作者:
    Mathew Johnson
Towards More Disorganised Decentralisation? Collective Bargaining in the Public Sector Under Pay Restraint
走向更加无组织的权力下放?
Civil society organisations in and against the state: Advice, advocacy and activism on the margins of the labour market
国家内部和反对国家的民间社会组织:劳动力市场边缘的建议、倡导和行动
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    S. Mustchin;Mathew Johnson;Marti Lopez‐Andreu
  • 通讯作者:
    Marti Lopez‐Andreu

Mathew Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathew Johnson', 18)}}的其他基金

Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Stochastic Calculus of Variations and Limit Theorems
随机变分和极限定理
  • 批准号:
    2054735
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Modulations of Periodic Waves in Applied Mathematics
应用数学中的周期波调制
  • 批准号:
    2108749
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Decent Work and the city
体面劳动与城市
  • 批准号:
    MR/T019433/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
4th Annual KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications
第四届偏微分方程、动力系统和应用 KUMUNU 年度会议
  • 批准号:
    1753332
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902192
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship Award

相似海外基金

Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
  • 批准号:
    23K03174
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
  • 批准号:
    2204788
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106157
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106203
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
  • 批准号:
    21K03315
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification of stability and instability of solitary waves for nonlinear Schroedinger equations
非线性薛定谔方程的孤波稳定性和不稳定性分类
  • 批准号:
    20K14349
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
  • 批准号:
    1908626
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Stability of two parameter family of solitary waves for nonlinear dispersive equations
非线性色散方程孤立波二参数族的稳定性
  • 批准号:
    18J11090
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Stability analysis of standing waves for nonlinear Schrodinger equations
非线性薛定谔方程驻波稳定性分析
  • 批准号:
    23840037
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了