Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
基本信息
- 批准号:1614785
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project focuses on stability and behavior of special classes of solutions of mathematical equations modeling a variety of physical phenomena including optical communication, shallow or stratified fluid flow, and inclined thin film flow. Emphasis is placed on the stability of nonlinear waves exhibiting a spatially periodic structure, which form fundamental building blocks for more complicated solutions in many applications. The stability of such structures (i.e. their ability to retain their form when disturbed) is of great practical importance, as waves that are not stable do not naturally manifest themselves in physical applications, except possibly for transient phenomena. The aim of this project is to provide researchers a mathematically rigorous theory by which they may distinguish between mathematical solutions that are stable, and hence have a possibility of being manifested in reality, and those that are not. This project will also include undergraduate and graduate students in research projects. The methodologies and techniques developed through this work will be incorporated into seminars, reading courses, and special topics courses appropriate for students from a variety of scientific disciplines.This project focuses on the existence, stability, and dynamics of special classes of traveling wave solutions in models arising naturally in mathematical physics and fluid mechanics. The aim is to systematically develop a linear and nonlinear stability analysis of spatially periodic standing or traveling structures in both Hamiltonian dispersive partial differential equations, in which energy is conserved, as well as hyperbolic-parabolic systems of conservation and balance laws, where energy is partially dissipated due to, for example, viscous effects. In the dispersive context, the research project will consider a variety of model equations with nonlocal descriptions of dispersion and will develop techniques and methodologies capable of treating not only low-frequency phenomena, which is in the realm of many classical theories, but also high-frequency behaviors of solutions, which are beyond the regime of validity of classical results. In the dissipative context, the research project will develop a systematic investigation of roll-waves, which are commonly-observed hydrodynamic instabilities arising naturally in many applications, such as fluid flow in conduits. Particular attention will be placed on understanding connections between the recently-developed viscous theories of such waves and more well-known inviscid theories.
该研究项目的重点是数学方程的特殊类的解决方案的稳定性和行为建模的各种物理现象,包括光通信,浅或分层的流体流动,倾斜的薄膜流。 重点放在表现出空间周期性结构的非线性波的稳定性,在许多应用中形成更复杂的解决方案的基本积木。 这种结构的稳定性(即它们在受到干扰时保持其形状的能力)具有很大的实际重要性,因为不稳定的波在物理应用中不会自然地表现出来,除了可能的瞬态现象。 该项目的目的是为研究人员提供一个数学上严格的理论,使他们可以区分稳定的数学解决方案,因此有可能在现实中表现出来,而那些不是。 该项目还将包括本科生和研究生的研究项目。 通过这项工作开发的方法和技术将被纳入研讨会,阅读课程,以及适合学生从各种科学学科的专题课程。本项目侧重于存在性,稳定性和动态的特殊类的行波解的模型自然产生的数学物理和流体力学。 其目的是系统地开发一个线性和非线性稳定性分析的空间周期性的站立或旅行结构在两个哈密顿色散偏微分方程,其中能量守恒,以及双曲抛物系统的守恒和平衡定律,其中能量部分耗散,例如,粘性效应。 在色散的情况下,该研究项目将考虑各种模型方程与非局部描述的色散,并将开发技术和方法,不仅能够治疗低频现象,这是在许多经典理论的领域,但也解决方案的高频行为,这是超出了经典结果的有效性制度。 在耗散方面,该研究项目将对滚波进行系统研究,滚波是在许多应用中自然产生的常见流体动力学不稳定性,例如管道中的流体流动。 特别注意将放在理解最近发展的粘性理论,这种波和更知名的无粘理论之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathew Johnson其他文献
Minimum wages and the multiple functions of wages
最低工资和工资的多重功能
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Rubery;Mathew Johnson;D. Grimshaw - 通讯作者:
D. Grimshaw
Examination of gender differences using the multiple groups DINA model
使用多组 DINA 模型检查性别差异
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Mathew Johnson;Young;R. Sachdeva;Jianzhou Zhang;M. Waldman;Jung Yeon Park - 通讯作者:
Jung Yeon Park
Campus Classification, Identity, and Change: The Elective Carnegie Classification for Community Engagement
校园分类、身份和变化:社区参与的选修卡内基分类
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
John A. Saltmarsh;Mathew Johnson - 通讯作者:
Mathew Johnson
Civil society organisations in and against the state: Advice, advocacy and activism on the margins of the labour market
国家内部和反对国家的民间社会组织:劳动力市场边缘的建议、倡导和行动
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.4
- 作者:
S. Mustchin;Mathew Johnson;Marti Lopez‐Andreu - 通讯作者:
Marti Lopez‐Andreu
Towards More Disorganised Decentralisation? Collective Bargaining in the Public Sector Under Pay Restraint
走向更加无组织的权力下放?
- DOI:
10.1111/irj.12166 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Grimshaw;Mathew Johnson;S. Marino;J. Rubery - 通讯作者:
J. Rubery
Mathew Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathew Johnson', 18)}}的其他基金
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
- 批准号:
2349508 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Stochastic Calculus of Variations and Limit Theorems
随机变分和极限定理
- 批准号:
2054735 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Modulations of Periodic Waves in Applied Mathematics
应用数学中的周期波调制
- 批准号:
2108749 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
4th Annual KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications
第四届偏微分方程、动力系统和应用 KUMUNU 年度会议
- 批准号:
1753332 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Stability of Nonlinear Waves in Dissipative and Dispersive PDE
耗散和色散偏微分方程中非线性波的稳定性
- 批准号:
1211183 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
An Investigation into the Stability and Dynamics of the Antarctic Peninsular Ice Sheet During the Last Deglaciation
末次冰消期南极半岛冰盖的稳定性和动力学研究
- 批准号:
2843365 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Studentship
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics and Stability of Multi-Component Lipid Vesicles in Flow
合作研究:多组分脂质囊泡流动的动力学和稳定性
- 批准号:
2147560 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Modeling Coriolis and stability effects on wake dynamics for wind farm flow control
风电场流量控制中尾流动力学的科里奥利力和稳定性影响建模
- 批准号:
2226053 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
- 批准号:
2223407 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Impact of myelin dynamics on functional network stability and memory persistence
髓磷脂动力学对功能网络稳定性和记忆持久性的影响
- 批准号:
RGPIN-2018-05967 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
The impact of life-history trait evolution on the stability of population dynamics
生活史性状进化对种群动态稳定性的影响
- 批准号:
RGPIN-2018-05189 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
Function and Mechanisms of Epigenetic Stability and Dynamics in Arabidopsis
拟南芥表观遗传稳定性和动态的功能和机制
- 批准号:
10669661 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research: Dynamics and Stability of Multi-Component Lipid Vesicles in Flow
合作研究:多组分脂质囊泡流动的动力学和稳定性
- 批准号:
2147559 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Identifying Ecosystem Properties Promoting Stability and Resistance: Modeling Late Ordovician Paleocommunity Dynamics and Functioning Across the Richmondian Invasion
职业:识别生态系统特性,促进稳定性和抵抗力:模拟晚奥陶世古群落动态和里士满入侵期间的功能
- 批准号:
2246395 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant














{{item.name}}会员




