CRII: CIF: Crowdsourcing-aware Learning
CRII:CIF:众包意识学习
基本信息
- 批准号:1755656
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning has significantly advanced the state of the art in a variety of applications. These successes have required massive labeled datasets for training machine learning algorithms. The collection of these labeled datasets usually involves human annotation. For instance, the training labels for supervised learning algorithms are often obtained through "crowdsourcing" where people label the data over the Internet in exchange for monetary incentives. Most learning algorithms, however, are agnostic of this human-labeling process. This project designs improved learning algorithms by incorporating the "human" aspect of the data collection process in the machine learning objective.In more detail, this project considers supervised binary classification tasks where the labels for the training data are obtained from people. The research involves design of learning algorithms that jointly consider the human collection process -- including the interfaces and incentives available to the human labelers -- and the overall learning objective. Theoretical guarantees of optimality are derived and compared with guarantees for algorithms which are agnostic of the human component. The algorithms and guarantees are based on models of human behavior from psychology, such as permutation-based models, that allow for maximal accuracy while making minimal assumptions on how the human labelers behave. The theoretical results are corroborated with practical implementations (open sourced) and real-world experiments (data freely available online).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习在各种应用中显着推进了最先进的技术。这些成功需要大量的标记数据集来训练机器学习算法。这些标记数据集的收集通常涉及人工注释。例如,监督学习算法的训练标签通常通过“众包”获得,其中人们通过互联网标记数据以换取金钱激励。然而,大多数学习算法对这种人类标记过程是不可知的。该项目通过将数据收集过程中的"人"方面纳入机器学习目标来设计改进的学习算法。更详细地说,该项目考虑了监督二进制分类任务,其中训练数据的标签是从人那里获得的。该研究涉及学习算法的设计,这些算法共同考虑人类收集过程-包括人类标签人员可用的接口和激励措施-以及整体学习目标。最优性的理论保证推导和保证算法是不可知的人的组成部分。算法和保证基于心理学中的人类行为模型,例如基于置换的模型,这些模型允许最大的准确性,同时对人类标签人员的行为做出最小的假设。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Testing for Biases in Peer Review
- DOI:
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Ivan Stelmakh;Nihar B. Shah;Aarti Singh
- 通讯作者:Ivan Stelmakh;Nihar B. Shah;Aarti Singh
On Strategyproof Conference Peer Review
- DOI:10.24963/ijcai.2019/87
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Yichong Xu;H. Zhao;Xiaofei Shi;Nihar B. Shah
- 通讯作者:Yichong Xu;H. Zhao;Xiaofei Shi;Nihar B. Shah
Your 2 is My 1, Your 3 is My 9: Handling Arbitrary Miscalibrations in Ratings
你的 2 是我的 1,你的 3 是我的 9:处理评级中的任意错误校准
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wang, J;Shah, N
- 通讯作者:Shah, N
Low Permutation-rank Matrices: Structural Properties and Noisy Completion
低排列秩矩阵:结构属性和噪声完成
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:6
- 作者:Shah, N;Balakrishnan, S;Wainwright, M
- 通讯作者:Wainwright, M
Active ranking from pairwise comparisons and when parametric assumptions do not help
- DOI:10.1214/18-aos1772
- 发表时间:2016-06
- 期刊:
- 影响因子:0
- 作者:Reinhard Heckel;Nihar B. Shah;K. Ramchandran;M. Wainwright
- 通讯作者:Reinhard Heckel;Nihar B. Shah;K. Ramchandran;M. Wainwright
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nihar Shah其他文献
Doubly heterogeneous monetary spillovers
双重异质货币溢出效应
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Nihar Shah - 通讯作者:
Nihar Shah
Sa1869 - The Impact of Body Mass Index on Post-Endoscopic Retrograde Cholangiopancreatography (ERCP) Outcomes: A National Inpatient Sample Analysis
- DOI:
10.1016/s0016-5085(18)31692-5 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:
- 作者:
Rupak Desai;Upenkumar Patel;Shreyans Doshi;Suman LH;Wardah Siddiq;Hitanshu A. Dave;Nihar Shah - 通讯作者:
Nihar Shah
CARDIAC SARCOIDOSIS: IS DELAY IN DIAGNOSIS PROVING TOO COSTLY?
- DOI:
10.1016/j.chest.2019.08.784 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Karthik Gonuguntla;Anand Muthu Krishnan;Chad Conner;Nihar Shah;Kathir Balakumaran - 通讯作者:
Kathir Balakumaran
DECITABINE-INDUCED ARDS: AN UNCOMMON CLINICAL ENTITY
- DOI:
10.1016/j.chest.2019.08.1192 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Nihar Shah;Toishi Sharma;Gaurav Manek;Rudra Ramanathan;Jennifer Kanaan - 通讯作者:
Jennifer Kanaan
RELATION OF MID-EXPIRATORY FLOW RATES TO BRONCHIAL HYPERRESPONSIVENESS DURING EXERCISE-INDUCED BRONCHOCONSTRICTION TEST
- DOI:
10.1016/j.chest.2019.08.493 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Katherine Stettmeier;Nihar Shah;Gaurav Manek;Debapriya Datta - 通讯作者:
Debapriya Datta
Nihar Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nihar Shah', 18)}}的其他基金
RI: Small: Robustness to Undesirable Behavior in Peer Review
RI:小:同行评审中对不良行为的鲁棒性
- 批准号:
2200410 - 财政年份:2022
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CAREER: Fundamentals of Learning from People with Applications to Peer Review
职业:向人学习的基础知识及其在同行评审中的应用
- 批准号:
1942124 - 财政年份:2020
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
CIF: Medium: Foundations of Learning from Paired Comparisons and Direct Queries
CIF:媒介:配对比较和直接查询学习的基础
- 批准号:
1763734 - 财政年份:2018
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
- 批准号:
2337796 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
CIF: Small: Graph Structure Discovery of Networked Dynamical Systems
CIF:小:网络动力系统的图结构发现
- 批准号:
2327905 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:
2413622 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant