CRII: CIF: Fundamental Limits of Conditional Stochastic Optimization
CRII:CIF:条件随机优化的基本限制
基本信息
- 批准号:1755829
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decision-making in the presence of randomness has been a fundamental and longstanding challenge in many fields of science and engineering. In the wake of recent breakthroughs in artificial intelligence, there has been a prominent transition of interests and demands from classical (single-stage) stochastic optimization to multi-stage stochastic programming. In contrast to classical stochastic optimization, multi-stage stochastic problems are known to suffer from the curse of dimensionality, for which efficient universal oracle-based algorithms are not readily available. The goal of this research is to build bridges from classical stochastic optimization to multi-stage stochastic problems by developing an understanding of the fundamental limits of an intermediate class of optimization problems - conditional stochastic optimization - in the hopes of closing the algorithmic and theoretical gaps. Because of its specificity (i.e., it involves nonlinear functions of conditional expectations and lacks unbiased stochastic oracles), this class of optimization problems falls beyond the theoretical and practical grasp of the vast majority of state-of-the-art optimization algorithms. The investigator will undertake a systematic study of this subject by (i) establishing new techniques for the design of algorithms adapted to different observation schemes and exploitable structures and (ii) developing sample complexities and non-asymptotic convergence analysis for the proposed algorithms. This research will significantly extend the current scope of stochastic optimization in both theory and applicability. It will also lay the foundation for achieving the long-term goal of bridging to multi-stage decision-making problems and enriching the computational toolbox and theoretical developments for optimization under uncertainty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在随机性存在的情况下进行决策一直是科学和工程的许多领域中的基本和长期挑战。 随着人工智能的突破,人们的兴趣和需求从经典的(单阶段)随机优化到多阶段随机规划有了显著的转变。与经典的随机优化相比,多阶段随机问题被称为遭受灾难的维度,有效的通用基于Oracle的算法是不容易获得的。本研究的目标是通过了解中间一类优化问题(条件随机优化)的基本限制,建立从经典随机优化到多阶段随机问题的桥梁,以期缩小算法和理论差距。由于其特殊性(即,它涉及条件期望的非线性函数,并且缺乏无偏随机预言),这类优化问题福尔斯超出了绝大多数现有技术的优化算法的理论和实际掌握。研究者将对这一主题进行系统的研究,方法是:(一)建立新的技术,用于设计适应不同观测方案和可利用结构的算法;(二)为拟议算法开发样本复杂性和非渐近收敛分析。该研究将在理论和应用上大大扩展目前随机优化的范围。 它也将为实现多阶段决策问题的长期目标奠定基础,并丰富计算工具箱和不确定性下优化的理论发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization
- DOI:10.1137/19m1284865
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Yifan Hu;Xin Chen;Niao He
- 通讯作者:Yifan Hu;Xin Chen;Niao He
Predictive Approximate Bayesian Computation via Saddle Points
通过鞍点进行预测近似贝叶斯计算
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Yang, Y.;Dai, B.;Kiyavash, N.;He, N.
- 通讯作者:He, N.
Target-Based Temporal Difference Learning
- DOI:
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Donghwan Lee;Niao He
- 通讯作者:Donghwan Lee;Niao He
Optimization for Reinforcement Learning: From a single agent to cooperative agents
- DOI:10.1109/msp.2020.2976000
- 发表时间:2019-12
- 期刊:
- 影响因子:14.9
- 作者:Dong-hwan Lee;Niao He;Parameswaran Kamalaruban;V. Cevher
- 通讯作者:Dong-hwan Lee;Niao He;Parameswaran Kamalaruban;V. Cevher
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Yifan Hu;Siqi Zhang;Xin Chen;Niao He
- 通讯作者:Yifan Hu;Siqi Zhang;Xin Chen;Niao He
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Niao He其他文献
Optimization Under Uncertainty Spring 2020 Lecture 10-11 : Chance-Constrained Programming ( CCPs )
不确定性下的优化 2020 年春季讲座 10-11:机会约束规划 ( CCPs )
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Niao He;Scribers Siqi Zhang;Yibo Zhang - 通讯作者:
Yibo Zhang
Robust Knowledge Transfer in Tiered Reinforcement Learning
分层强化学习中的稳健知识转移
- DOI:
10.48550/arxiv.2302.05534 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiawei Huang;Niao He - 通讯作者:
Niao He
Online Learning for Multivariate Hawkes Processes
多元霍克斯过程的在线学习
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yingxiang Yang;Jalal Etesami;Niao He;N. Kiyavash - 通讯作者:
N. Kiyavash
Optimization and Learning Algorithms for Stochastic and Adversarial Power Control
随机和对抗功率控制的优化和学习算法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Harsh Gupta;Niao He;R. Srikant - 通讯作者:
R. Srikant
Niao He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231706 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231707 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312667 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CIF: Small: Fundamental Communication Latency Limits Beyond the Traditional Block-Coding Architecture
CIF:小:超越传统块编码架构的基本通信延迟限制
- 批准号:
2309887 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CIF: Small: Generic Building Blocks of Communication-efficient Computation Networks - Fundamental Limits
CIF:小型:通信高效计算网络的通用构建块 - 基本限制
- 批准号:
2221379 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312227 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: RUI: Do You Trust Me? Practical Approaches and Fundamental Limits for Keyless Authentication
合作研究:CIF:媒介:RUI:你相信我吗?
- 批准号:
2107488 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant