CRII: SHF: Enabling Neuroevolution in Hardware
CRII:SHF:在硬件中实现神经进化
基本信息
- 批准号:1755876
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-15 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past few years, machine learning algorithms, especially neural networks (NN) have seen a surge of popularity owing to their potential in solving a wide variety of complex problems across image classification and speech recognition. Unfortunately, in order to be effective, NNs need to have the appropriate topology (connections between neurons) for the task at hand and have the right weights on the connections. This is known as supervised learning and requires training the NN by running it through terabytes to petabytes of data. This form of machine learning is infeasible for the emerging domain of autonomous systems (robots/drones/cars) which will often operate in environments where the right topology for the task may be unknown or keep changing, and robust training data is not available. Autonomous systems need the ability to mirror human-like learning, where we are continuously learning, and often from experiences rather than being explicitly trained. This is known as reinforcement learning (RL). The goal of this project will be on enabling RL in energy-constrained autonomous devices. If successful, this research will enable mass proliferation of automated robots or drones to assist human society. The learnings will also be used to develop new courses on cross-layer support for machine learning. The focus of the research will be on neuroevolution (NE), a class of RL algorithms that evolve NN topologies and weights using evolutionary algorithms. The idea is to run multiple "parent" NNs in parallel, have the environment provide a reward (score) to the actions of all NNs, and create a population of new "child" NNs that preserve those nodes and connections from the parents that lead to actions producing the maximum reward. Running NE algorithms over multiple iterations has been shown to evolve complex behaviors in NNs. Unfortunately, NEs are computationally very expensive and have required large scale compute clusters running for hours before converging. A characterization of the computation and memory behavior of NE algorithms will be performed, and opportunities to massively parallelize these algorithms across genes (i.e., nodes and connections in the NN) will be explored. The evolutionary learning steps of crossover and mutation will be performed over specialized hardware engines, and a low-power architectural platform running NE algorithms at the edge will be demonstrated. Furthermore, the proposed research will serve as the foundation for further research in fast and energy-efficient RL algorithms to help realize general-purpose artificial intelligence.
在过去的几年中,机器学习算法,尤其是神经网络(NN),由于它们在解决图像分类和语音识别方面解决了各种复杂问题的潜力,因此人们看到了广受欢迎的信息。不幸的是,为了有效,NNS需要对手头任务具有适当的拓扑(神经元之间的连接),并在连接上具有正确的权重。这被称为有监督的学习,需要通过通过trabytes将其运行到数据的数据来培训NN。这种机器学习形式对于自主系统(机器人/无人机/汽车)的新兴域而言是不可行的,该域通常会在适用于任务的正确拓扑的环境中运行,或者继续进行更改,并且不可用。自主系统需要能够反映我们持续学习的人类学习的能力,并且通常是从经验而不是接受明确训练的能力。这被称为增强学习(RL)。该项目的目标将是在能源约束的自主设备中启用RL。如果成功,这项研究将使自动机器人或无人机的大规模扩散以协助人类社会。这些学习还将用于开发有关机器学习跨层支持的新课程。该研究的重点将放在神经进化(NE)上,NE,这是一类使用进化算法进化NN拓扑和权重的RL算法。 这个想法是在并行运行多个“父” NN,使环境为所有NNS的行为提供了奖励(分数),并创建一个新的“孩子” NNS人群,从而保留了来自父母的这些节点和连接的新“孩子”,从而导致行动产生最大的奖励。已显示在多个迭代上运行NE算法可以在NNS中发展复杂的行为。不幸的是,NES在计算上非常昂贵,并且需要大规模计算簇在收敛之前运行数小时。将执行NE算法的计算和记忆行为的表征,并将探索跨基因(即NN中的节点和连接)大规模平行这些算法的机会。跨界和突变的进化学习步骤将通过专业的硬件引擎执行,并且将展示在边缘运行NE算法的低功耗架构平台。此外,拟议的研究将为快速和节能的RL算法进行进一步研究的基础,以帮助实现通用人工智能。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GeneSys: Enabling Continuous Learning through Neural Network Evolution in Hardware
- DOI:10.1109/micro.2018.00074
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:A. Samajdar;Parth Mannan;K. Garg;T. Krishna
- 通讯作者:A. Samajdar;Parth Mannan;K. Garg;T. Krishna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tushar Krishna其他文献
Bridging the Frequency Gap in Heterogeneous 3D SoCs through Technology-Specific NoC Router Architectures
通过特定技术的 NoC 路由器架构弥合异构 3D SoC 中的频率差距
- DOI:
10.1145/3394885.3431421 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. M. Joseph;L. Bamberg;J. Geonhwa;Ruei-Ting Chien;Rainer Leupers;Alberto García-Oritz;Tushar Krishna;Thilo Pionteck - 通讯作者:
Thilo Pionteck
H3DFact: Heterogeneous 3D Integrated CIM for Factorization with Holographic Perceptual Representations
H3DFact:利用全息感知表示进行因子分解的异构 3D 集成 CIM
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zishen Wan;Che;Mohamed Ibrahim;Hanchen Yang;S. Spetalnick;Tushar Krishna;A. Raychowdhury - 通讯作者:
A. Raychowdhury
SDQ: Sparse Decomposed Quantization for LLM Inference
SDQ:LLM 推理的稀疏分解量化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Geonhwa Jeong;Po;S. Keckler;Tushar Krishna - 通讯作者:
Tushar Krishna
Accurate Low-Degree Polynomial Approximation of Non-polynomial Operators for Fast Private Inference in Homomorphic Encryption
非多项式算子的精确低次多项式逼近,用于同态加密中的快速私有推理
- DOI:
10.48550/arxiv.2404.03216 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jianming Tong;Jing Dang;Anupam Golder;Callie Hao;A. Raychowdhury;Tushar Krishna - 通讯作者:
Tushar Krishna
FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN Models
FRED:DNN 模型晶圆级分布式训练的灵活 REduction-Distribution 互连和通信实现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Saeed Rashidi;William Won;S. Srinivasan;Puneet Gupta;Tushar Krishna - 通讯作者:
Tushar Krishna
Tushar Krishna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tushar Krishna', 18)}}的其他基金
Collaborative Research: Frameworks: Advancing Computer Hardware and Systems' Research Capability, Reproducibility, and Sustainability with the gem5 Simulator Ecosystem
协作研究:框架:利用 gem5 模拟器生态系统提升计算机硬件和系统的研究能力、可重复性和可持续性
- 批准号:
2311892 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
OAC Core: SHF: Small: Enabling Rapid Design and Deployment of Deep Learning Models on Hardware Accelerators
OAC 核心:SHF:小型:支持在硬件加速器上快速设计和部署深度学习模型
- 批准号:
1909900 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Student Travel Support for the 2018 Parallel Architectures and Compilation Techniques (PACT-18) Conference
2018 年并行架构和编译技术 (PACT-18) 会议的学生差旅支持
- 批准号:
1842928 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Student Travel Support for the 2017 International Symposium on Computer Architecture (ISCA-44)
2017 年计算机体系结构国际研讨会 (ISCA-44) 的学生旅行支持
- 批准号:
1738358 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
- 批准号:81572468
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Architecture Innovations for Enabling Simultaneous Translation at the Edge
合作研究:SHF:小型:支持边缘同步翻译的架构创新
- 批准号:
2223484 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant